首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. J. Krug 《Marine Biology》1998,132(3):483-494
A San Diego population of the opisthobranch mollusc Alderia modesta (Lovén, 1844) exhibits poecilogony, the presence of two development modes within a single species. In spring, half of the adults spawned masses containing ∼300 eggs with a mean diameter of 68 μm. After 3 d, these egg masses hatched planktotrophic veligers with a maximum shell dimension of 116 μm. The remaining adults spawned masses containing ∼30 eggs with a mean diameter of 105 μm. These egg masses hatched after 5 to 6 d, releasing lecithotrophic larvae with a maximum shell dimension of 186 μm. About 1% of field-collected adults produced mixed clutches containing a continuum of larval sizes, spanning the size extremes of planktotrophy and lecithotrophy and hatching larvae with a mean maximum shell dimension of 152 μm. Adults producing planktotrophic and lecithotrophic larvae were interfertile, and no hybrid breakdown was observed through the F3 generation. When starved, adults which previously produced only lecithotrophic larvae switched to producing planktotrophic larvae or mixed clutches with both planktotrophic and lecithotrophic larvae. Sequence-polymorphisms from a portion of the mitochondrial cytochrome c oxidase I gene support the conclusion that the two reproductive morphs represent a single species. Most of the lecithotrophic larvae and a small percentage of the larvae from mixed clutches were metamorphically competent within 3 d of hatching. A. modesta is the only molluscan species as yet known to have both planktotrophic and pelagic lecithotrophic development within a single natural population. Received: 14 August 1997 / Accepted: 11 April 1998  相似文献   

2.
Females of the spionid polychaete Streblospio benedicti (Webster) produce either small eggs (60–70 μm diameter) and planktotrophic larvae, or large eggs (100–200 μm) and lecithotrophic larvae that reportedly do not feed. This intraspecific polymorphism, a form of poecilogony, is potentially useful in studies of larval ecology and evolution, but necessary data on larval form and function are lacking. This study describes the morphology and nutritional biology of larvae obtained from Atlantic (South Carolina) and Pacific (California and Washington) populations from 2003 to 2005. The two types of larvae produced by Atlantic S. benedicti differed greatly in length (229±22 μm SD for planktotrophs vs. 638±40 μm for lecithotrophs) and chaetiger number (2–5 vs. 10–11) at release from the female’s brood pouch. Planktotrophic larvae bore long provisional chaetae on their first chaetiger; provisional chaetae were absent in lecithotrophic larvae. Larvae from Pacific populations were all of the lecithotrophic form, and were similar to their Atlantic counterparts in all respects. High-speed video microscopy revealed that both types of larvae used opposed bands of cilia to capture suspended particles and transport them to the mouth, where they were often ingested. Lecithotrophic larvae reared with suspended phytoplankton (Rhodomonas sp., 104 cells ml−1) for 2 days grew significantly faster than sibling larvae reared without added food, indicating that these larvae can digest and assimilate ingested food. Larvae of S. benedicti that develop from large eggs are thus facultative planktotrophs instead of obligately non-feeding lecithotrophs, a result that affects the interpretation of comparative studies of the ecology and evolution of larvae in S. benedicti and certain other marine invertebrates.  相似文献   

3.
Streblospio benedicti (Webster) from Tar Landing North Carolina (NC), USA with either planktotrophic or lecithotrophic development were reared under two food levels and three temperature regimes (two mimicking seasonal cycles in NC and one at constant 20°C). During the eight-month experiment no females switched reproductive mode and no significant differences in survivorship or reproductive activity were observed between reproductive types. However, reproductive activity and fecundity-related parameters were subject to influence by food and temperature. Survivorship, body size, and larval production was greater in winter-spring than summer-fall regimes. Higher food levels produced increased survivorship, reproductive activity and egg production in adults with lecithotrophic development but no change in those with planktotrophic development. Body size, egg size, egg number, numbers of larvae per brood pouch, and brood size were strongly correlated in female S. benedicti and most correlation coefficients were similar (or identical) in individuals having planktotrophic and lecithotrophic development. A comparison of egg size and brood size in females from Tar Landing suggests that individuals with the two forms of development package offspring differently but expend approximately equivalent reproductive effort. Larval trophic mode is best viewed as a genetic polymorphism in S. benedicti. Individuals with planktotrophic and lecithotrophic development exhibit similar reproductive responses to environmental variation and there is no evidence for speciation.  相似文献   

4.
The effects of the widespread polycyclic aromatic hydrocarbon (PAH) fluoranthene on sediment-processing rates in the infaunal polychaete Capitella spp. were investigated by comparing five populations of this deposit-feeding species complex: Capitella sp. I from New York, USA; Capitella sp. M from Milos, Greece; Capitella sp. S from Sylt, Germany; and two unidentified Capitella populations from salmon farm sediments –Capitella population K from Kilmelford, Scotland and Capitella population C from Cranford, Ireland. Replicate worms from each strain were exposed to 0, 10, and 95 μg (g dry wt sediment)−1 fluoranthene (=μg/g fluoranthene) for a period of 16 days. Initial and final wet and dry weights (mg) of worms and worm-specific growth rates (WSGRs) were calculated. Sediment processing was measured as the sum of the total dry weight of pellets produced during the experiment, and we estimated size-specific processing rates (SSPRs) as a measure of sediment processed per mg worm dry weight per day. The five populations of Capitella spp. differed significantly in body size, WSGR, and sediment-processing rates. Capitella sp. I grew faster than all of the other populations. Capitella population C and Capitella population K from fish farm sediments, with the largest body lengths (up to 52.0 ± 27.2 mm), had the highest processing rates, whereas the small Capitella sp. S (up to 17.1 ± 5.6 mm) had the lowest. There were also significant differences in SSPR among populations with Capitella sp. I having a higher SSPR (about 12 × body wt/day) than Capitella population C (about 5 × body wt/day) and Capitella population K (3 × body wt/day). The fluoranthene concentrations used in the present study, while representing moderately to highly contaminated conditions, had only marginal effects on sediment-processing and growth rates of all of the Capitella populations examined. Processing of contaminated sediment by Capitella spp. may be important in the remediation of PAH-contaminated sediment. Received: 16 January 2000 / Accepted: 28 August 2000  相似文献   

5.
The talitrid amphipod Uhlorchestia spartinophila lives in close association with standing-dead leaves of the smooth cordgrass Spartina alterniflora Loisel in salt marshes along the Atlantic coast of North America. This study probed the strength of the trophic link between the amphipod population and the decomposition process in this detrital-based ecosystem. We measured survival, growth and reproductive output in groups of amphipods reared for 6 wk on five diets derived from sheath and blade portions of S. alterniflora leaves just prior to (senescent) and during (dead) decomposition. In unfed treatments, the daily specific mortality rate was 0.391 and starved amphipods survived no longer than 11 d. Among the fed treatments, a diet of senescent sheaths resulted in the lowest survival (20%) and yielded no offspring. Groups fed senescent blades, dead sheaths, dead blades and unwashed dead sheaths had survival rates of 56 to 84% and produced 5.0 to 12.5 offspring replicate−1. Sex ratio usually favored females, but approached unity in treatments with high overall survival, suggesting that quality of available food resources may influence sex ratio in this species. Mean specific growth rates (mm mm−1 d−1) ranged from 0.013 to 0.016, and matched previous estimates of growth from field populations. Overall ecological performance (survival + growth + reproduction) was similar for all food treatments, except senescent sheaths, which yielded a final mean (±SD) dry biomass (0.4 ± 0.42 mg replicate−1) of amphipods significantly lower than that of other diets (1.7 ± 0.81 to 2.6 ± 0.69 mg replicate−1). Natural diets derived from decomposing cordgrass leaves can fulfill the nutritional requirements of U. spartinophila populations, but variation in initial amounts of living fungal biomass among the five experimental diets only partially explained the responses of amphipods in our experiment. Structural characteristics and variation in rates of fungal occupation within different portions of cordgrass leaves may affect the amphipod's ability to access plant production made available by decomposers. Received: 12 December 1996 / Accepted: 18 December 1996  相似文献   

6.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

7.
 The diet of juvenile pink shrimp (Farfantepenaeus duorarum Burkenroad, previously Penaeus duorarum) from Long Key Bight, Florida Keys, was studied using stomach content examination, pigment measurements, and stable isotope (δ13C and δ15N) analysis. Samples were taken over approximately 24 h on four occasions from December 1997 to June 1998. Juvenile F. duorarum fed nocturnally, the main prey being the seagrass shrimp Thor floridanus (Decapoda: Caridea: Hippolytidae), which accounted for 34% of the stomach content volume. Other common components of the diet were bivalves (mainly Tellina sp.) with 15% volume, calcareous algae (8%), plant detritus (5%), copepods (3%), and seagrass fragments (2%). Pigment concentrations (chlorophyll a plus phaeopigments) in F. duorarum stomachs ranged from 7 to 73 mg l−1 or 40 to 310 ng stomach−1. The exponential gastric evacuation rate was determined experimentally at 1.3 ± 0.5 h−1. Daily rations (in percent body weight) calculated from time series of stomach fullness ranged between 11 and 16% d−1. Total consumption by the population (in wet weight) ranged between 0.05 and 0.3 g m−2 d−1. Stable isotope measurements confirmed that T. floridanus was the main food source for F. duorarum. δ13C-values of whole animals of both species were identical at −10.0 ± 1.6‰ PDB. δ15N-values of both species were also not significantly different (pooled mean: 5.9 ± 1.7‰). Stomach contents of wild-caught F. duorarum and stomach contents of F. duorarum fed T. floridanus also showed similar stable isotope values. Received: 12 August 1999 / Accepted: 21 March 2000  相似文献   

8.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

9.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

10.
Genetic analysis of the marine bryozoans Celleporella hyalina and Electra pilosa using the RAPD technique revealed population structuring corresponding to the contrasting modes of larval dispersal. Samples of C. hyalina exhibited genetic differentiation over distances as small as 10 m, concordant with the limited dispersal predicted by a simulation model, based on the short pelagic phase of the lecithotrophic larvae and the local hydrography. In contrast, E. pilosa showed high levels of genetic heterogeneity only over much larger spatial scales, commensurate with its production of comparatively long-lived planktotrophic larvae. The population differentiation observed between samples of E. pilosa, collected from sites 70 km apart, is reconcilable with coastal water currents and frontal systems that restrict the exchange of water masses between the two sites. Hydrographic conditions and discontinuous distribution of suitable substrata therefore are seen to constrain gene flow, creating opportunities for local genetic differentiation despite the high dispersal potential of pelagic larvae. Received: 9 August 2000 / Accepted: 18 November 2000  相似文献   

11.
Mytilus edulis L., Ruditapes philippinarum (Adams & Reeve) and Tapes decussatus L. were fed particles of the same shape (spherical), the same density (2.1 g cm−3) and the same chemical composition (SiO2), but which varied in diameter from 5 to 37 μm. Findings obtained at different particle concentrations (mean ± SD) of 51 ± 2, 105 ± 18 and 171 ± 17 mg l−1 invariably indicate that significant proportions of all particles with diameters larger than from between 7.5 and 22.5 μm were preferentially rejected as pseudofaeces. We define the preferential ingestion index (PII) as the ratio between average particle volume in pseudofaeces and average particle volume in food. Whatever the particle concentration or the species, this PII was always statistically higher than 1. Irrespective of particle concentration, PII values in M. edulis were lower than in T. decussatus (averages of 1.2 and 2, respectively). PII values in M. edulis were also lower than in R. philippinarum maintained at particle concentrations above 171 ± 17 mg l−1. We suggest that preferential size-dependent rejection of larger particles could be of significant adaptive value in the natural environment, either if there are large inorganic particles, or if the average organic content of smaller particles is higher. Received: 11 January 1997 / Accepted: 8 March 1997  相似文献   

12.
Many species of marine invertebrate larvae settle and metamorphose in response to chemicals produced by organisms associated with the adult habitat, and histamine is a cue for larvae of the sea urchin Holopneustes purpurascens. This study investigated the effect of histamine on larval metamorphosis of six sea urchin species. Histamine induced metamorphosis in larvae of three lecithotrophic species (H. purpurascens, Holopneustes inflatus and Heliocidaris erythrogramma) and in one planktotrophic species (Centrostephanus rodgersii). Direct comparisons of metamorphic rates of lecithotrophic and planktotrophic larvae in assays cannot be made due to different proportions of larvae being competent. Histamine (10 μM) induced metamorphosis in 95% of larvae of H. purpurascens and H. inflatus after 1 h, while the coralline alga Amphiroa anceps induced metamorphosis in 40–50% of these larvae. Histamine (10 μM) and A. anceps induced 40 and 80% metamorphosis, respectively, in the larvae of H. erythrogramma after 24 h. Histamine (10 μM) and the coralline alga Corallina sp. induced 30 and 70% metamorphosis, respectively, in the larvae of C. rodgersii after 24 h. No metamorphosis of any larval species occurred in seawater controls. Larvae of two planktotrophic species (Tripneustes gratilla and Heliocidaris tuberculata) did not metamorphose in response to histamine. Seagrasses, the host plants of H. inflatus, induced rapid metamorphosis in larvae of the two Holopneustes species, and several algae induced metamorphosis in C. rodgersii larvae. Histamine leaching from algae and seagrasses may act as a habitat marker and metamorphic cue for larvae of several ecologically important sea urchin species.  相似文献   

13.
Ammonium concentrations of ∼1 M are commonly cited as being the threshold for inhibition of NO3 uptake, but the applicability of this threshold to phytoplankton from different taxonomic classes has rarely been examined. Additionally, little is known about the influence of environmental variables (e.g. growth temperature) on the interaction between ambient NH4 + and NO3 uptake. Four species of estuarine phytoplankton, two diatom [Chaetoceros sp., and Thalassiosira weissflogii (Grunow) Fryxell et Hasle] and two dinoflagellate [Prorocentrum minimum (Pavillard) Schiller, and Gyrodinium uncatenum Hulburt], were grown on NO3 at several different temperatures (4, 10, 15, or 20 °C), and the impact of NH4 + additions on NO3 uptake/assimilation (non-TCA-extracted) and assimilation (TCA-extracted) was assessed. For all species at all temperatures, NO3 uptake/assimilation and assimilation rates decreased in a roughly exponential manner with increasing NH4 + concentrations but were not completely inhibited even at elevated NH4 + concentrations of 200 μM. Estimated half-inhibition concentrations (K i) were significantly greater in the diatom species (mean ± SE; 2.70 ± 0.67 μM) than in the dinoflagellate species (1.26 ± 0.55 μM). Half-inhibition constants were positively related to temperature-limited relative growth rate although not significantly. The observed inhibition of NO3 uptake and assimilation, as a percentage of NO3 uptake in the absence of NH4 +, averaged about 80% and ranged from 49 to 100%. For all species, a significant (P < 0.001) positive correlation was found between percent inhibition of NO3 assimilation and temperature-limited relative growth rate. Two experiments on Chesapeake Bay phytoplankton during an April 1998 diatom bloom showed that in short-term (∼1 h) temperature manipulation experiments, percent inhibition of NO3 uptake/assimilation was also positively related (P = 0.05) to experimental temperature. The observed relationships between temperature-limited relative growth rate and percent inhibition of NO3 assimilation rates for the species tested suggest that at the enzyme level, the inhibitory mechanism of NO3 assimilation is similar among species, but at the whole cell level may be regulated by species-specific differences in the accumulation of internal metabolites. These findings add not only to our understanding of species-specific variability and the role of growth temperature, but also provide additional data with which to evaluate current models of NH4 + and NO3 interactions. Received: 31 August 1998 / Accepted: 7 December 1998  相似文献   

14.
Development mode in the ophiuroid genus Macrophiothrix includes an unusual diversity of planktonic larval forms and feeding types. The modes of development for seven congeners that coexist in coral reef habitats at Lizard Island, Australia were compared using larvae generated from crosses over several reproductive seasons from 1999 to 2003. Three species (Macrophiothrix koehleri Clark, Macrophiothrix longipeda Lamarck, Macrophiothrix lorioli Clark) develop from small eggs (<170 μm) into typical obligately feeding planktonic (planktotrophic) pluteus larvae with four larval arm pairs. The remaining four species develop from larger eggs (≥230 μm) into either facultatively-feeding or non-feeding (lecithotrophic) larval forms. The facultative planktotroph (Macrophiothrix rhabdota Clark) retains the ability to digest and benefit from food but does not require particulate food to complete metamorphosis. Among the lecithotrophic species, Macrophiothrix caenosa Hoggett retains the pluteus morphology with four pairs of larval arms, but is incapable of feeding, depending instead on maternal provisions for larval development. The remaining two lecithotrophs have simplified larval morphologies with only a single pair of full length (Macrophiothrix nereidina Lamarck) or highly reduced (Macrophiothrix belli Doderlein) larval arms and no functional mouth or gut. This genus includes the first example of facultative planktotrophy in ophiuroids, the first example in echinoderms of a complete pluteus morphology retained by a lecithotrophic larva, and three degrees of morphological simplification among lecithotrophic larval forms. Egg volume varies 20-fold among species and is related to variation in feeding mode, larval form, and development time, as predicted for the transition from planktotrophic to lecithotrophic development.  相似文献   

15.
Distributions of serotonin and catecholamines in larvae of the marine bryozoan Bugula neritina (Bryozoa: Cheilostomatida) were investigated using immunohistochemistry with anti-serotonin antiserum and glyoxylic acid–induced fluorescence histochemistry. Anti-serotonin immunoreactive substances and glyoxylic acid–induced fluorescent substances had similar distributions in the equatorial neuromuscular ring, the neural plexus, the paired axial neuromuscular cords, and tracts connecting the neural plexus to ciliated cells bordering the pyriform organ. The effects of dopamine, noradrenaline, adrenaline, tyramine, octopamine, synephrine and serotonin, at 10−4, 10−5 and 10−6M, on settlement were analysed. In filtered seawater, 98% of larvae settled in 3 h, but only 11%, 3% and 6% total settlement was observed after 8 h in 10−4M dopamine, 10−4M serotonin and 10−5M serotonin, respectively. Total settlement was 70% in 10−4M noradrenaline, 80% in 10−4M adrenaline and 60% in 10−4M tyramine. Less than 60% settlement was observed in 10−4 and 10−5M octopamine and synephrine. Serotonin's inhibitory effect on settlement was mimicked by a range of serotonin receptor agonists and antagonists, among which 5-carboxamidotryptamine was the most potent. Received: 19 March 1999 / Accepted: 11 October 1999  相似文献   

16.
The effects of food availability, female size, and social interactions on the quality of Pomacentrus amboinensis larvae at hatching were examined using two field-based experiments. In Experiment 1, food availability and female size significantly influenced size, eye diameter and levels of yolk reserves of larvae at hatching. Small females (47 to 52 mm standard length, SL) whose diets were not supplemented, produced the longest larvae (3.0 ± 0.01 mm total length, TL) with the least yolk reserves (50.1 ± 1.04 μm2). Irrespective of female size, those that received additional food produced larvae with the largest yolk-sacs (large females: 87.60 ± 1.53 μm2; small females: 80.14 ± 1.24 μm2). In Experiment 2, interactions with conspecifics had a greater affect on the somatic development of larvae at hatching than food availability. Increased social interactions resulted in larvae that were ⋍3% longer, with 2% greater head depth, than larvae from females that spawned in isolation on the experimental reefs. Fed females produced larvae with ⋍20% more yolk than larvae from females whose diets were not supplemented. All three factors (food availability, female size, and intensity of social interactions) tested within these experiments vary spatially and temporally among reefs. There is the potential, therefore, for larvae at the onset of the planktonic stage to vary in quality, level of development, and probability of survival. Received: 12 August 1996 / Accepted: 26 August 1996  相似文献   

17.
Phosphorylated ATPases may be involved in the effective pH regulation seen in the hydrothermal vent tubeworm Riftia pachyptila. R. pachyptila appears not only to have a large concentration of ATPases, but the main function of these ATPases seems to have shifted from other types of transport, such as Na+ and K+ movement, to the facilitation of H+ elimination. Plume and trophosome ATPase activity for R. pachyptila measured 646.2 ± 29.5 and 481.4 ± 32.0 μmol Pi (inorganic phosphate) g−1 wet wth−1, respectively. Plume tissue ATPase activity (both mass-specific and protein-specific) in R. pachyptila was higher (between 7% and 55%) than the activity measured in any tissue for 7 other shallow- and deep-living species, in this study. This supports the hypothesis that R. pachyptila regulates acid/base balance via high concentrations of H+-ATPases, including Na+/H+ and K+/H+ exchangers and possibly electrogenic H+-ATPases, as evidenced by a higher total ATPase concentration (646 μmol Pi g−1 wet wt h−1), lesser Na+/K+-ATPase activity (13% of the total, as compared to 20−40% found in other animals), and higher H+-ATPase activity (226–264 μmol Pi g−1wet wt h−1). Overall, R. pachyptila appears to demonstrate elevated ATPase activity, with a greater fraction of the enzymes devoted to proton elimination, in order to effectively control its extracellular pH in the face of processes acting to acidify the internal environment. Received: 9 May 2000 / Accepted: 4 October 2000  相似文献   

18.
Polychaetes constitute most of the benthic macroinvertebrates in estuarine and coastal environments. We investigated the utilization of organic matter in two polychaete species, Capitella sp. I and Perinereis nuntia brevicirris, living in different coastal habitats. The protease activity of Capitella sp. I (89.7 μg mg−1) was about 10 times that of P. nuntia brevicirris (8.0 μg mg−1). High cellulase (endo-β-1,4-glucanase) activity was detected in P. nuntia brevicirris (3.2 μg mg−1), whereas scarcely any was detected in Capitella sp. I. We isolated cDNA clones of protease mRNA from Capitella sp. I and of cellulase mRNA from P. nuntia brevicirris. The high protease activity of Capitella sp. I enabled it to survive in the sediment under a fish farm, where it degrades organic matter. In contrast, the high cellulase activity of the estuary-dwelling P. nuntia brevicirris allowed it to degrade organic matter originating from terrestrial areas.  相似文献   

19.
Cassiduloids are currently rare irregular echinoids with a highly conserved adult morphology. Aristotle’s lantern is present only during the post-metamorphic stage, and little is known about the early development of species in this group. Cassidulus mitis produces eggs of about 375 μm in diameter, lecithotrophic larvae with four reduced arms with skeletal fenestrated rods, cilia along the body surface, and a ciliated band on arms and lobes. Offspring is brooded among the female spines from embryo to settler’s stage. The echinopluteus larval stage is reached 6 days after fertilization, and the settler’s stage is formed at the age of 17 days. Aristotle’s lantern appears around the thirteenth day of development. The lantern is well developed and functional in settlers. It remains until at least 62 days after fertilization and can be used to acquire food from the environment. The early development of C. mitis is unusual concerning features of typical lecithotrophic larvae (such as reduced arms), but retains some features of planktotrophic larvae (such as skeletal rods and a ciliated band). Regarding egg size, early development in C. mitis seems to be transitioning from facultative lecithotrophic to typical obligate lecithotrophic pattern in echinoid larval evolution.  相似文献   

20.
S. K. Wilson 《Marine Biology》2000,136(3):431-437
An evaluation of the dietary resources available to, and selected by, blennies of the tribe Salariini was used to assess their trophic status on the Great Barrier Reef. Gut-content analysis of nine species of blennies found detrital aggregates to be the dominant item ingested. Samples of the dietary resources available to one of these species, Salarias patzneri, were compared biochemically. Of the two main dietary categories (detrital aggregates and filamentous algae), detrital aggregates were the major resource available, accounting for 53 ± 4.6% (SE) of the organic matter present. The mean C:N values for detrital aggregates (17.2 ± 0.8) and filamentous algae (20.0 ± 1.8) were very similar, as were protein concentrations (1.8 ± 0.1 and 2.1 ± 0.1 μg mg−1, respectively). However, mean carbohydrate concentrations were much lower in the aggregates than the filamentous algae (19 ± 2 and 76 ± 13 μg mg−1, respectively). Comparison of the inorganic particles ingested to those available indicated that S. patzneri selectively fed on particles <125 μm, (predominantly detrital aggregates) and avoided particles >250 μm, (predominantly algal filaments). The patterns of resource availability, nutritional quality and selectivity suggest that salariin blennies utilise detrital aggregates as their primary dietary resource. Received: 24 May 1999 / Accepted: 29 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号