首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

2.
The occurrence of cashmerane (DPMI), celestolide, phantolide, traesolide (ATII), galaxolide (HHCB) and tonalide (AHTN) in sewage and surface waters and their fate during wastewater treatment and anaerobic sludge digestion is investigated. AHTN and HHCB are the most important representatives and influent concentrations of 0.41-1.8 and 0.9-13 μg L−1 are observed. DPMI is detected in influent and effluent samples but in notably lower concentrations than AHTN and HHCB. Major sources of polycyclic musks are households, whereas industrial emitters seem to be of minor importance. This conclusion is supported by the analysis of selected industrial wastewaters (metal, textile and paper industry). Specific emissions of 0.36 ± 0.19 and 1.6 ± 1.0 mg cap−1 d−1 for AHTN and HHCB are calculated. Overall removal efficiencies between approx 50% and more than 95% are observed during biological wastewater treatment and removal with the excess sludge is the major removal pathway. Log KD values of 3.73-4.3 for AHTN, 3.87-4.34 for HHCB and 2.42-3.22 for DPMI are observed in secondary sludge. During sludge digestion no or only slight removal occurred. Mean polycyclic musk concentrations in digested sludge amounted to 1.9 ± 0.9 (AHTN), 14.2 ± 5.8 (HHCB), 0.8 ± 0.4 (ATII) and 0.2 ± 0.09 (DPMI) mg kg−1 dry matter. In the receiving water systems a comparable distribution as during wastewater treatment is observed. AHTN, HHCB and DPMI are detected in surface waters (ND (not detected) - < 0.04, ND - 0.32 and ND - 0.02 μg L−1) as well as AHTN and HHCB in sediments (ND - 20, ND - 120 μg kg−1). For HHCB an apparent KOC value of 4.1-4.4 is calculated for sediments. Major source for polycyclic musks in surface waters are discharges from wastewater treatment plants. For HHCB and DPMI 100% of the load observed in the sampled surface waters derive from discharges of treated wastewater.  相似文献   

3.
The behaviour and effects of atorvastatin (ATO), carbamazepine (CBZ), and 17α-ethinylestradiol (EE2) were investigated in spiked lake sediments, at concentrations up to 56.5 mg kg−1 dry weight (dw), with the benthic invertebrates Chironomus dilutus and Hyalella azteca. Desorption constants were calculated in the presence and absence of animals, using linear isotherms, yielding Kd values of 28.2, 189.0 and 125.1 L kg−1 (ATO), 73.7, 201.7 and 263.2 L kg−1 (CBZ), and 114.9, 114.2 and 519.2 L kg−1 (EE2) for C. dilutus, H. azteca, and without animals, respectively. For ATO and CBZ, Kd values were smaller in the presence of C. dilutus, indicating greater desorption to the overlying water from bioturbation, which is consistent with the predominantly benthic occurrence of C. dilutus compared to H. azteca. In contrast, due to its greater hydrophobicity, bioturbation did not significantly affect desorption of EE2. No significant toxicity was observed, indicating decreased bioavailability of the chemicals sorbed to sediments compared with water-only toxicity assays.  相似文献   

4.
Fresh and pasteurized milk samples from Kampala markets were analyzed for organochlorine pesticides using a gas chromatograph equipped with an electron capture detector. Five organochlorine pesticides, namely; aldrin, dieldrin, endosulfan, lindane, DDT and its metabolites were detected in the milk samples and confirmed with a gas chromatograph equipped with a mass spectrometer [GC-MS]. The mean values are expressed in mg kg−1 milk fat (mf) basis. The mean concentration in the fresh milk (= 54) were: 0.026 ± 0.003 mg kg−1 mf; 0.002 ± 0.0003 mg kg−1, below the detection limit; 0.007 ± 0.003 mg kg−1, 0.009 ± 0.002 mg kg−1 milk fat for lindane, endosulfan dieldrin and aldrin, respectively. The mean concentrations of p,p′-DDE; p,p′-DDT and o,p′-DDT were 0.009 ± 0.002 mg kg−1; 0.033 ± 0.007 mg kg−1 and 0.008 ± 0.001 mg kg−1 mf, respectively in the fresh milk samples.In the pasteurized milk samples (= 47), the mean concentrations recorded were: 0.008 ± 0.003 mg kg−1, 0.025 ± 0.004 mg kg−1, and 0.007 ± 0.001 mg kg−1, respectively for p,p′-DDE; p,p′-DDT and o,p′-DDT.Alpha and beta-endosulfan recorded the concentration below the detection limit and the mean of 0.022 ± 0.001 mg kg−1 mf, 0.005 ± 0.002 mg kg−1 mf, and 0.006 ± 0.0002 mg kg−1 mf, respectively for lindane, dieldrin and aldrin. Although, most of the residues detected were above the residue limits set by the FAO/WHO (2008), bioaccumulation of these residues is likely to pose health risks to the consumers of milk in Uganda.  相似文献   

5.
Lindstrom SM  White JR 《Chemosphere》2011,85(4):625-629
Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1 ± 0.4 mg P m−2 d−1), dry down (1.5 ± 0.9 mg P m−2 d−1) and CaCO3 (0.8 ± 0.7 mg P m−2 d−1) treatments while the soil removal and alum treatments were significantly lower at 0.02 ± 0.10 and −0.07 ± 0.02 mg P m−2 d−1, respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal.  相似文献   

6.
Liu X  Garoma T  Chen Z  Wang L  Wu Y 《Chemosphere》2012,87(10):1134-1140
The rate constants of sulfamethoxazole (SMX) degradation by ozonation and UV254 radiation were investigated under various parameters including influent ozone gas concentration, initial SMX concentration, UV light intensity, ionic strength, water quality in terms of varying anions (bicarbonate, sulfate and nitrate), humic acid (HA) and pH. The results indicated that the removal of SMX by ozonation and UV254 radiation fitted well to a pseudo first-order kinetic model and the rate constants were in the range of (0.9-9.8) × 10−3 and (1.7-18.9) × 10−3 s−1, respectively. The second-order rate constants of SMX with ozone (kO3), under varying operational parameters, were also determined and varied in the range of (0.60-3.38) ± 0.13 × 105 M−1 s−1. In addition, SMX degradation through UV pretreatment followed by ozonation in the presence of HA was proved to be an effective method which can remove SMX with a low ozone dose. The results suggested that ozonation of SMX was more affected by concentration of influent ozone gas, alkalinity, and HA, while incident UV light intensity, pH, and HA were the dominant factors influencing UV degradation of SMX.  相似文献   

7.
Antimony (Sb) distribution, solubility and mobility onto natural soils of China were studied in lysimeter and batch experiments as a function of physicochemical properties of the soil. An outdoor lysimeter experiment investigated the leaching and migration of Sb in the soils with Sb-polluted topsoil and unpolluted subsoil over a 5 month period. Soil solutions were collected by suction cups installed at different depth of lysimeters, and leachates were regularly collected and analyzed for Sb concentrations. The majority of the added Sb was retained in the topsoil layers, but small portions were moved to the sub-layers. Sb concentrations in the soil solutions and leachates ranged from 0–755.5 (6.38 ± 54 on average) μg l−1 and 0–0.45 (smaller than the detection limit) μg l−1 respectively, indicating the low solubility of Sb in the soils. Batch experiments were performed in order to determine the sorption capacity and the partition coefficient (Kd). Freundlich isotherm described properly the equilibrium experimental data and results show that the Kd values for Primosol, Isohumosol, Ferrosol equal to 22.5, 87.8, 704 L kg−1, respectively. These results showed the strong capacity of the soils to retain Sb, and prevent it being leached down the profile. The mobilizable Sb was in the order: Primosol > Isohumosol > Ferrosol. Sb migration in the soils was mainly associated with the exchangeable, carbonate-bound, and metal–organic complex-bound fractions. Health risk assessment indicates that Sb leaching from Ferrosol will not harm to human health through groundwater under the test conditions, while it has certain health risks from the Isohumosol and Primosol.  相似文献   

8.
Zerovalent iron powder (ZVI or Fe0) and nanoparticulate ZVI (nZVI or nFe0) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe0 and nFe0. Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the β-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L−1) undergo first-order decay with half-lives of about 60.3 ± 3.1 and 43.5 ± 2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t1/2 of about 11.5 ± 0.6 and 11.2 ± 0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe0 consumption, shortening the service life of Fe0 treatment systems.  相似文献   

9.
Liu CP  Luo CL  Xu XH  Wu CA  Li FB  Zhang G 《Chemosphere》2012,86(11):1106-1111
The ability of calcium peroxide (CaO2) to immobilize As of contaminated soil was studied using pot and field experiments. In pot experiment, CaO2 applied at 2.5 and 5 g kg−1 significantly increased celery shoot weight and decreased shoot As accumulation, which was ascribed to the formation of stable crystalline Fe and Al oxides bound As and the reduction of labile As fractions in the soil. The labile As fractions were pH dependent and it followed a “V” shaped profile with the change of pH. In field experiment, the dose of CaO2 application at 750 kg ha−1 was optimal and at which the celery was found to produce the highest biomass (63.4 Mg ha−1) and lowest As concentration (0.43 mg kg−1). CaO2 probably has a promising potential as soil amendment to treat As contaminated soils.  相似文献   

10.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

11.
Evaluation of Chitosan zerovalent Iron Nanoparticle (CIN) towards arsenic removal is presented. Addition of chitosan enhances the stability of Fe(0) nano particle. Prepared adsorbent was characterized by FT-IR, SEM EDX, BET and XRD. It was found that, with an initial dose rate of 0.5 g L−1, concentrations of As (III) and As (V) were reduced from 2 mg L−1 to <5 μg L−1 in less than 180 min and the adsorbent was found to be applicable in wide range of pH. Langmuir monolayer adsorption capacity was found to be 94 ± 1.5 mg g−1 and 119 ± 2.6 mg g−1 at pH 7 for As (III) and As (V) respectively. Major anions including sulfate, phosphate and silicate did not cause significant interference in the adsorption behavior of both arsenite and arsenate. The adsorbent was successfully recycled five times and applied to the removal of total inorganic arsenic from real life groundwater samples.  相似文献   

12.
This study sought to extend validation of a cyclodextrin based extraction method for the assessment of PAH-biodegradation potential to complex multi-contaminant matrices. To this end, four reference materials (RMs) were produced by blending, in different proportions, soils impacted with diesel, lubricating oil and spent oxide. These reference materials had modest ∑PAH (16 US EPA) concentrations that ranged from 5.6 ± 0.5 to 44.4 ± 4.5 mg kg−1. However, extractable petroleum hydrocarbon (EPH) concentrations were comparatively high (up to 2520 ± 204 mg kg−1). To complement these RMs, two further soils from a municipal gas plant (MGP) with highly elevated concentration of PAHs ranging from 877 ± 52 to 2620 ± 344 mg kg−1 were also tested. Results showed, regardless of matrix complexity, that PAH biodegradation within the four RM substrates, and two MGP soils correlated well with biodegradation predicted by hydroxypropyl-β-cyclodextrin (HPCD) extraction.  相似文献   

13.
A 13.4 L biofilter treating an off-gas stream supplemented with methanol under two different situations was studied in terms of MeOH removal efficiency, microbial ecology and odor removal. During Period 1 (P1) the reactor was packed with wood bark chips with no pH control, treating an off-gas resulting from the aerobic chamber of a membrane biological reactor treating sewage and located outdoor, whereas during Period 2 (P2) a compressed air stream fed with MeOH was treated using PVC rings and maintaining pH at neutral values. Both systems operated at 96 g MeOH m−3 h−1 achieving removal efficiencies of around 90% during P1 and 99.9% during P2. The relative activity of biomass developed in both systems was assessed using respirometric analysis with samples obtained from both biofilms. Higher biomass activity was obtained during P2 (0.25-0.35 kg MeOH kg−1 VSS d−1) whereas 1.1 kg MeOH kg−1 VSS d−1 was obtained in the case of P1. The application of molecular and microscopic techniques showed that the eukaryotes were predominant during P1, being the yeast Candida boidinii the most abundant microorganism. A specific Fluorescence in situ hybridization probe was designed for C. boidinii and tested successfully. As a result of the neutral pH, a clear predominance of prokaryotes was detected during P2. Interestingly, some anaerobic bacteria were detected such as Desulfovibrio, Desulfobacteraceae species and also some archaea such as Methanosarcina.  相似文献   

14.
Linlin W  Xuan Z  Meng Z 《Chemosphere》2011,83(5):693-699
In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O3/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5 ± 1.1 to 0.7 ± 0.3 mg L−1 and from 267 ± 24 to 52 ± 6 μg L−1, respectively. The very low DOC concentration of 0.6 ± 0.2 mg L−1 and THMFP of 44 ± 4 μg L−1 can be reached after the aquifer treatment.  相似文献   

15.
Li W  Ma Y  Li L  Qin DM  Wu YJ 《Chemosphere》2011,82(6):829-833
The residual levels and dissipation rate of trichlorfon, and its degradation product, dichlorvos, in cabbage crops and the soil in which these were grown, were determined by gas chromatography at two geographically distant experimental sites, one in Kunming and one in Beijing, China. Trichlorfon was applied at two dosages (900 g ai ha−1 and 1350 g ai ha−1). Maximum final residues of trichlorfon in soil and cabbage were 1.23 mg kg−1 and 1.81 mg kg−1 respectively at Kunming, and 0.35 mg kg−1 and 0.70 mg kg−1 respectively at Beijing. However, the final residues of dichlorvos in both cabbage and soil was only 0.04 mg kg−1 at Kunming, and only 0.03 mg kg−1, or “not detectable”, at Beijing. The mean half-life of trichlorfon in cabbage was 1.80 d with a dissipation rate of 90% over 5 d, while that in soil was 3.05 d with a dissipation rate of 90% over 14 d at one experimental site. The dissipation rates of trichlorfon and its degradation product dichlorvos at the two experimental sites were different, suggesting that degradation of these pesticides was affected by local soil characteristics and climate. When applied at both the recommended dosage and at 1.5 times this, no detectable residues of either trichlorfon or dichlorvos were found in soil or cabbage at harvest. Although trichlorfon can easily degrade into dichlorvos, which is highly toxic to humans and other animals, the observed low residual levels of dichlorvos suggest that trichlorfon is safe when applied at the recommended dosage.  相似文献   

16.
Photolytic and photocatalytic degradation of 6-chloronicotinic acid   总被引:1,自引:0,他引:1  
This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental matrices. Photolytic experiments were performed with three UVA (ultraviolet A) polychromatic fluorescent lamps with broad maximum at 355 nm, while photocatalytic experiments were performed using immobilised titanium dioxide (TiO2) on six glass slides in the spinning basket inside a photocatalytic quartz cell under similar irradiation conditions. Photolytic degradation revealed no change in concentration of 6CNA within 120 min of irradiation, while the photocatalytic degradation within 120 min, obeyed first-order kinetics. The observed disappearance rate constant was k = 0.011 ± 0.001 min−1 and t1/2 was 63.1 ± 5.5 min. Mineralisation rate was estimated through total organic carbon (TOC) and measurements revealed no carbon removal in case of photolysis after 120 min of exposure. However in photocatalytic experiments 46 ± 7% mineralisation was achieved within 120 min of irradiation. Nevertheless, the removal of total nitrogen (TN) was not observed across all experiments. Ion chromatographic analyses indicated transformation of chlorine atoms to chloride and increase of nitrate(V) ions only via photocatalytic experiments. Efficiency of selected advanced oxidation process (AOP) was investigated through toxicity assessment with Vibrio fischeri luminescent bacteria and revealed higher adverse effects of treated samples on bacteria following photocatalytic degradation in spite of the fact that higher mineralisation was achieved. New hydroxylated product generated in photocatalytic experiments with TiO2, was confirmed with liquid chromatography-electro spray ionisation mass spectrometry (LC-ESI-MS/MS) analyses, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (1H NMR).  相似文献   

17.
Chlorination of chlortoluron: kinetics, pathways and chloroform formation   总被引:1,自引:0,他引:1  
Xu B  Tian FX  Hu CY  Lin YL  Xia SJ  Rong R  Li DP 《Chemosphere》2011,83(7):909-916
Chlortoluron chlorination is studied in the pH range of 3-10 at 25 ± 1 °C. The chlorination kinetics can be well described by a second-order kinetics model, first-order in chlorine and first-order in chlortoluron. The apparent rate constants were determined and found to be minimum at pH 6, maximum at pH 3 and medium at alkaline conditions. The rate constant of each predominant elementary reactions (i.e., the acid-catalyzed reaction of chlortoluron with HOCl, the reaction of chlortoluron with HOCl and the reaction of chlortoluron with OCl) was calculated as 3.12 (± 0.10) × 107 M−2 h−1, 3.11 (±0.39) × 102 M−1 h−1 and 3.06 (±0.47) × 103 M−1 h−1, respectively. The main chlortoluron chlorination by-products were identified by gas chromatography-mass spectrometry (GC-MS) with purge-and-trap pretreatment, ultra-performance liquid chromatography-electrospray ionization-MS and GC-electron capture detector. Six volatile disinfection by-products were identified including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone, dichloronitromethane and trichloronitromethane. Degradation pathways of chlortoluron chlorination were then proposed. High concentrations of CF were generated during chlortoluron chlorination, with maximum CF yield at circumneutral pH range in solution.  相似文献   

18.
Hu XY  Fan J  Zhang KL  Wang JJ 《Chemosphere》2012,87(10):1155-1160
In this work, Bi4NbxTa(1−x)O8I photocatalysts have been synthesized by solid state reaction method and characterized by powder X-ray diffraction, scanning electron microscope and UV-Vis near infrared diffuse reflectance spectroscopy. The photocatalytic activity of these photocatalysts was evaluated by the degradation of methyl orange (MO) in aqueous solutions under visible light, UV light and solar irradiation. The effects of catalyst dosage, initial pH and MO concentration on the removal efficiency were studied, and the photocatalytic reaction kinetics of MO degradation as well. The results indicated that Bi4NbxTa(1−x)O8I exhibited high photocatalytic activity for the removal of MO in aqueous solutions. For example, the removal efficiency of MO by Bi4Nb0.1Ta0.9O8I was as high as 92% within 12 h visible light irradiation under the optimal conditions: initial MO concentration of 5-10 mg L−1, catalyst dosage of 6 g L−1 and natural pH (6-8), the MO molecules could be completely degradated by Bi4Nb0.1Ta0.9O8I within 40 min under UV light irradiation, and the photodegradation efficiency reaches to 60% after 7 h solar irradiation. Furthermore, the photocatalytic degradation of Bisphenol A (BPA) was also investigated under visible light irradiation. It is found that 99% BPA could be mineralized by Bi4Nb0.1Ta0.9O8I after 16 h visible light irradiation. Through HPLC/MS, BOD, TOC, UV-Vis measurements, we determined possible degradation products of MO and BPA. The results indicated that MO was degradated into products which are easier to be biodegradable and innocuous treated, and BPA could be mineralized completely. Furthermore, the possibility for the photosensitization effect in the degradation process of MO under visible light irradiation has been excluded.  相似文献   

19.
Phosphine in paddy fields and the effects of environmental factors   总被引:1,自引:0,他引:1  
Ambient levels of phosphine (PH3) in the air, phosphine emission fluxes from paddy fields and rice plants, and the distribution of matrix-bound phosphine (MBP) in paddy soils were investigated throughout the growing stages of rice. The relationships between MBP and environmental factors were analyzed to identify the principal factors determining the distribution of MBP. The phosphine ambient levels ranged from 2.368 ± 0.6060 ng m−3 to 24.83 ± 6.529 ng m−3 and averaged 14.25 ± 4.547 ng m−3. The highest phosphine emission flux was 22.54 ± 3.897 ng (m2 h)−1, the lowest flux was 7.64 ± 4.83 ng (m2 h)−1, and the average flux was 14.17 ± 4.977 ng (m2 h)−1. Rice plants transport a significant portion of the phosphine emitted from the paddy fields. The highest contribution rate of rice plants to the phosphine emission fluxes reached 73.73% and the average contribution was 43.00%. The average MBP content of 111.6 ng kg−1fluctuated significantly in different stages of rice growth and initially increased then decreased with increasing depth. The peak MBP content in each growth stage occurred approximately 10 cm under the surface of paddy soils. Pearson correlation analyses and stepwise multiple regression analysis showed that soil temperature (Ts), acid phosphatase (ACP) and total phosphorus (TP) were the principal environmental factors, with correlative rankings of Ts > ACP > TP.  相似文献   

20.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号