首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
沉淀—超声波气浮—接触氧化法处理退浆废水   总被引:1,自引:0,他引:1  
以诸暨漂染厂废水处理工程为实例介绍了混凝沉淀─—超声波气浮─—接触氧化法处理高浓度退浆废水处理系统。该废水处理系统经2年多运行表明:CODcr的去除率达94.0%,出水水质达到了国家排放标准。该处理工艺设备简单,效果可靠,具有推广使用价值。  相似文献   

2.
海上溢油回收技术研究及发展   总被引:3,自引:0,他引:3  
论述了厌氧-好氧(A/O)工艺的基本原理及工艺参数。该工艺在冀东油田两座废水处理站的应用结果表明,对废水中石油类物质、COD、硫化物去除效果明显。高一联合站及柳一联合站污水经处理后,石油类物质去除率分别为90.6%和96.0%;COD去除率分别为86.0%和91.6%;硫化物去除率分别为94.8%和98.2%,处理后的污水均达到一级排放标准。另外,采用厌氧-好氧工艺的成本相对较低,处理费用低于0.5元/m3。处理后的污水若回注地下,平均费用为4.7元/m3。  相似文献   

3.
海上溢油回收技术研究   总被引:4,自引:0,他引:4  
论述了厌氧-好氧(A/O)工艺的基本原理及工艺参数。该工艺在冀东油田两座废水处理站的应用结果表明,对废水中石油类物质、COD、硫化物去除效果明显。高一联合站及柳一联合站污水经处理后,石油类物质去除率分别为90.6%和96.0%;COD去除率分别为86.0%和91.6%;硫化物去除率分别为94.8%和98.2%,处理后的污水均达到一级排放标准。另外,采用厌氧-好氧工艺的成本相对较低,处理费用低于0.5元/m3。处理后的污水若回注地下,平均费用为4.7元/m3。  相似文献   

4.
采用"前絮凝沉淀+环境治理微生物A/O+后絮凝沉淀+四相催化氧化+活性焦吸附"组合工艺进行某市工业集中区废水处理中试试验。结果表明,运行稳定后COD总去除率≥90%,氨氮总去除率≥95%,处理后出水可达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级B标准。  相似文献   

5.
厌氧-好氧工艺在含油废水生化处理中的应用   总被引:5,自引:1,他引:5  
(中国石油冀东油田分公司安全环保处)论述了厌氧-好氧(A/O)工艺的基本原理及工艺参数。该工艺在冀东油田两座废水处理站的应用结果表明,对废水中石油类物质、COD、硫化物去除效果明显。高一联合站及柳一联合站污水经处理后,石油类物质去除率分别为90.6%和96.0%;COD去除率分别为86.0%和91.6%;硫化物去除率分别为94.8%和98.2%,处理后的污水均达到一级排放标准。另外,采用厌氧-好氧工艺的成本相对较低,处理费用低于0.5元/m3。处理后的污水若回注地下,平均费用为4.7元/m3。  相似文献   

6.
本文介绍了物化-生物接触氧化工艺在洗水废水中的应用。运行结果表明,该处理工艺对于洗水废水中的COD、BOD、色度、SS的去除率均在80%以上,出水达到广东省地方标准《水污染物排放限值》(DB44/26—2001)一级标准。该工艺具有适应性强、处理效果稳定、有机物及色度去除率高、投资低等特点,因此在洗水废水处理中具有良好的应用前景。  相似文献   

7.
介绍了脉冲喷流复合厌氧污泥床技术用于低浓度有机废水处理的实验室及中试效果,以及在农村生活污水处理项目中的应用,结果表明:以该技术为核心的生活污水生物处理系统,在HRT为6~10h,即有机物容积负荷为0.93~0.52kgCOD/m3.d时,COD去除率可稳定达到35%以上,氨氮和总磷去除率可达到17%~25%,具有优化处理系统、强化处理效果、降低后续好氧段能耗及占地面积的特点。  相似文献   

8.
通过分析炼油废水的特点及其在水中存在的形式,根据炼油废水回用水处理法,结合庆阳石化炼油废水处理系统,介绍了庆阳石化炼油废水采用物化处理+生化处理+回用处理工艺过程及系统组成。  相似文献   

9.
根据符合GB31570—2015《石油炼制工业污染物排放标准》中基准排水量要求的某石油炼制企业的废水处理与循环利用工程设置和实际运行数据,文章以酸性水汽提处理、电脱盐废水预处理、催化剂再生烟气脱硫废水处理等炼油企业点源废水分质处理工艺,全厂污水深度处理与回用和循环利用工 程为主要研究对象,系统研究了石油炼制主要产排废水分质处理与循环利用的工程实践对炼油企业节水减排的贡献。  相似文献   

10.
催化氧化复合生物技术处理油气田压裂返排液   总被引:1,自引:1,他引:0  
针对油气田压裂返排液处理难度大的问题,以四川某气田井组压裂返排液为研究对象,通过对其水质特征和治理技术现状的分析,提出催化氧化复合生物处理工艺并进行了现场实验。实验结果表明:该技术对于压裂返排液COD去除效果明显,最终出水COD浓度均降至100mg/L以下,COD去除率达到98%以上;G-BAF生化系统进水盐度在0.5%~5%时,系统适应性非常好,有机物去除率达93%以上;当盐度提高到8%时,有机物去除率仍能保持在84%左右,G-BAF生化系统适合高盐度压裂返排液的处理;压裂返排液出水主要污染指标COD浓度、氨氮浓度、SS浓度、pH值均达到GB 8978—1996《污水综合排放标准》一级标准,出水可用于油田及污水处理站设备清洁、钻井岩屑清洗等,实现废水综合利用。  相似文献   

11.
The aim of present study was to investigate the quality of the produced effluent from different units of the Iran Central Iron Ore in Bafq city and comparison of effluent with the standards. This study presents the physicochemical and biological parameters data of effluent of three Sequencing batch reactors (SBR) with a capacity of 160 m3?d?1. Most common parameters include pH, total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD5), chemical oxygen demand (COD), heavy metals, and total coliforms and fecal coliforms as biological indicators. Then, for each SBR system, the average of each parameter was determined, and results were compared with the standard recommended by the Iranian Environmental Protection Agency. Based on the results, some of the parameters, including BOD5, COD, and TSS in the wastewater treatment plant (WWTP) effluent, are higher than the permitted amount for discharge to the surface water. Considering the BOD5, COD, and TSS concentration in WWTPs, the treated wastewater is only suitable for agricultural and irrigation use. Therefore, wastewater produced by Iran Central Iron Ore Co. will need additional treatment to achieve standard quality of water before discharge in surface water and adsorbent well.  相似文献   

12.
Biological treatment of landfill leachate usually results in low nutrient removals because of high chemical oxygen demand (COD), high ammonium-N content and the presence of toxic compounds such as heavy metals. Landfill leachate with high COD content was pre-treated by coagulation-flocculation with lime followed by air stripping of ammonia at pH=12. Nutrient removal from pre-treated leachate was carried out using a lab-scale sequencing batch reactor (SBR). Three different operations consisting of different numbers of steps were tested and their performances were compared. These operations were the three-step anaerobic (An)/anoxic (Ax)/oxic (Ox); the four-step (An/Ox/Ax/Ox), and the five-step (An/Ax/Ox/Ax/Ox) operations with total residence time of seven hours each. Experiments were carried out using three consecutive operations with a total cycle time of 21 h at a constant sludge age of 10 days. The lowest effluent nutrient levels were realized by using the five-step operation which resulted in effluent COD, NH4-N and PO4-P contents of 1,400, 107 and 65 mg l(-1), respectively, at the end of 21 h. Addition of domestic wastewater (1/1, v/v) and powdered activated carbon (PAC, 1 g l(-1)) to the pre-treated leachate improved nutrient removals in the five-step SBR operation, resulting in 75% COD, 44% NH4-N and 44% PO4-P removals after 21 hours of operation.  相似文献   

13.
Photocatalytic degradation of organic wastes with nanosized titanium dioxide particles has been studied for a long time in order to offer an appropriate method for wastewater treatment, but its practical application is greatly limited by the slow process. In this work, an electrochemically assisted TiO2 photocatalytic system was set-up by combining a TiO2 photocatalytic cell with a three-electrode potentiostatic unit. The composite system revealed high photocatalytic activity towards organic wastes mineralization. After continuous treatment for 0.5 h, the maximum absorption of rhodamine 6G (R-6G) was reduced by more than 90%; chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) of textile dye wastewater (TDW) were decreased by 93.9 and 88.7%, respectively. The biodegradability of TDW was also improved because the COD/BOD5 ratio decreased from 2.1 to 1.2. All these results indicated that the composite system could be used for effective organic wastes mineralization or as a feasible detoxification and color removal pretreatment stage for biological post treatment.  相似文献   

14.
The Hangu Reservoir, located in Binhai New Area, Tianjin, China, receives mixed wastewater from a chemical industrial park. The aging chemical industrial wastewater is less biodegradable and contains complex hazardous substances, thus having an adverse effect on local ecological service function of the reservoir and on local economic and social development. In this study, key toxicants in the aging chemical industrial wastewater from the Hangu Reservoir were systematically identified by the toxicity identification evaluations (TIEs), and the treatment efficiency of the aging chemical industrial wastewater was examined and optimized by a municipal wastewater treatment process simulated in a laboratory. According to the TIE results using and wheat seeds as tested organisms, Cl, Cu, Pb, and Zn were identified as key toxicants in the aging chemical industrial wastewater, with concentrations of 7349.11, 0.01, 0.07, and 0.07 mg L, respectively, which were confirmed by subsequent spiking approaches. Based on the TIE results, the aging chemical industrial wastewater could be classified as high-salinity wastewater. The co-treatment of the aging chemical industrial wastewater and municipal wastewater may be an effective and low-cost method. The treatment efficiency of the mixed wastewater increased with an increase in the volume ratio of municipal wastewater to aging chemical industrial wastewater. When the volume ratio was 10:1, the best removal efficiencies of chemical oxygen demand, total N, and total P were up to 85.1, 89.3, and 96.5%, respectively, whereas the toxicity unit of the treated wastewater was reduced to 0.50.  相似文献   

15.
Investigations were conducted into the treatment of effluents produced during manufacturing processes at both a chemicals production facility and a paint manufacturing facility. A comparison of costs of wastewater treatment at both facilities was also performed. The untreated effluents from both facilities were high in biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS). In addition, the effluents from the two facilities deviated significantly in dissolved oxygen (DO) content and pH levels. However, both facilities ultimately released treated wastewater with allowable amounts or levels of BOD, COD, TDS, DO, and pH as permitted by the Department of the Environment, Ministry of Environment and Forests, Bangladesh (DOE). The effluent treatment plants (ETP) at both facilities contained combinations of chemical and biological treatment processes. The treatment processes used at the chemicals production facility and at the paint manufacturing facility were continuous and semi‐batch processes, respectively. The biological treatment section of the ETP at the chemicals production facility has both anaerobic and aerobic units, while the paint manufacturing facility has only an aerobic unit. Annual installation and operation costs of the ETP at the chemicals production facility was Bangladeshi Taka (Tk) 1,300,000 ($16,667 US dollars) and Tk 800,000 ($10,257), respectively. The annual installation and operation costs of the ETP at the paint manufacturing facility were Tk 3,050,000 ($39,103) and Tk 6,200,000 ($79,488), respectively.  相似文献   

16.
The objectives in this work were to investigate a conceptual layout for an inexpensive and simple system that would treat primary municipal wastewater to discharge standards. A commercial hydroponic system was adapted for this study and the wastewater was used to irrigate wooly digitalis (Digitalis lanata Ehrh.) and foxglove (Digitalis purpurea L.). These plants are medicinal and produce cardenolide compounds. Influent and effluent samples were collected once a month for six months and analyzed to determine the various parameters relating to water quality. The legal discharge levels for total suspended solids (SS), biochemical oxygen demand (BOD5), and chemical oxygen demand (COD) were reached for the two tested plants after 48 h of wastewater treatment; the removal was 82, 93, and 79%, respectively, for wooly digitalis and 92, 92, and 84%, respectively, for foxglove. Similar results were obtained during a 6-mo period although the sewage composition varied widely. The system tended to be unable to remove N and P to concentrations below regulated levels. Compared with the nutrient solution composition, the wastewater was more concentrated in Na+ and Cl- and less in N, K+, and Ca2+. These variations can lead to the decline of wooly digitalis plants. Foxglove developed a significant root system to increase mineral absorption wastewater being used as the unique nutritive source. After 10 wk all the wooly digitalis seedlings were dead. Despite this fact, however, the root system remained in place for a significant time (< 4 mo), thus continuing to filter wastewater and to be used as a bacterial support thus making it possible to have a security period to replace the dead plants.  相似文献   

17.
The main objective of this paper was to perform a preliminary comparative study between chemical and electrochemical coagulation processes, both followed by flocculation and sedimentation of an effluent from an upflow anaerobic sludge blanket (UASB) reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrochemical treatment removed up to 67% (with aluminum electrodes) and 82% (with stainless-steel electrodes) of the remaining chemical oxygen demand (COD) and 84% (stainless steel) and 98% (aluminum) of the color in the wastewater. These efficiencies were achieved with an energy consumption ranging from 14 to 20 Wh l(-1). The coagulation-flocculation treatment with ferric chloride and aluminum sulfate removed up to 87% and 90% of COD and 94% and 98% of color, respectively. The addition of a high molecular weight cationic polymer enhanced both COD and color removal efficiencies. The two post-treatment processes proved to be technically feasible; however the economical feasibility could not be assessed since the experiments were performed with small reactors that could distort scale factors.  相似文献   

18.
Use of cattails in treating wastewater from a Pb/Zn mine   总被引:2,自引:0,他引:2  
This article describes the use of a combined treatment system, which includes an aquatic treatment pond withTypha latifolia Linn. (Typhaceae) as the dominant species and a stabilization pond, to treat the wastewater from a Pn/Zn mine at Shaoguan, Guangdong Province, China. In 1983, it was noted thatT. latifolia bloomed in areas affected by the wastewater emitted from the mine, hence a combined purification system was subsequently built. The influent contained high levels of total suspended solids (4635 mg/liter), chemical oxygen demand (14.5 mg/liter) as well as Pb (1.6 mg/liter) and Zn (1.9 mg/liter). The results of the effluent after treatment showed that the total suspended solids, chemical oxygen demand, Pb, and Zn had been reduced by 99%, 55%, 95%, and 80% respectively. The results of plant tissue analysis indicled thatT. latifolia assimilated significant amounts of Pb and Zn, especially in the root portion. During 1986 several species of algae and fish were present in the pond, usually with a higher density in areas containing lower metal concentrations in the water. Paper was presented in part at the conference “The Use of Constructed Wetlands in Water Pollution Control” held 24–28 September 1990, Cambridge, UK.  相似文献   

19.
Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 2912 and 150 mgO2/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mgO2/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBC) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law. Therefore, the characteristics of chemical industrial wastewater determine which treatment system to utilize. Based on laboratory results engineering design of each treatment system was developed and cost estimate prepared.  相似文献   

20.
Phytoremediation of dairy effluent by constructed wetland technology   总被引:1,自引:0,他引:1  
Constructed wetlands are artificial wastewater treatment systems consisting of shallow ponds or channels which have been planted with aquatic plants and which rely upon natural microbial, biological, physical and chemical process to treat wastewater and are gaining acceptance in the recent years as a viable option for the treatment of industrial effluents and removal of toxic components. In this study, an attempt was made to compare the efficiency of aquatic macrophytes like Typha sp., Eichhornia sp., Salvinia sp., Pistia sp., Azolla sp. and Lemna sp. to treat the effluents from dairy factory, under laboratory conditions in constructed wetlands. The biological oxygen demand and chemical oxygen demand of dairy effluent were reduced up to 65.4–83.07% and 70.4–85.3%, respectively, after treatment with constructed wetland technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号