首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cadmium (Cd) shows high toxicity to aquatic microalgae. Many studies showed that Cd inhibited activities of photosystem II (PSII) but the effects of heavy metals on photosystem I (PSI) and cyclic electron flow (CEF) were still controversial and unclear. The effects of CdCl2 on the activities of PSI, PSII and CEF in Chlorella pyrenoidosa was measured simultaneously in the present study. In presence of 200 μM of Cd, ultrastructure of some cells was strongly modified. Cd exposure led to decrease of the activities of photosynthetic oxygen evolution and respiration. PSII was more sensitive to Cd treatment than PSI. Cd treatment showed significant inhibition on the photochemical quantum yield and electron transport rate of PSII. Cd increased the quantum yield of non-light-induced non-photochemical fluorescence quenching, indicating the damage of PSII. The activity of PSI showed tolerance to Cd treatment with concentration less than 100 μM in the experiment. Linear electron flow (LEF) made significant contribution to the photochemical quantum yield of PSI of the untreated cells, but decreased with increasing Cd concentration. The contribution of CEF to the yield of PSI increased with increasing Cd concentration. The activation of CEF after exposure to Cd played an essential role for the protection of PSI.  相似文献   

2.
Aksmann A  Tukaj Z 《Chemosphere》2008,74(1):26-32
Short-term (24h) experiments were performed to examine the effect of anthracene (ANT) on Chlamydomonas reinhardtii cw92 grown in a batch culture system aerated with 2.5% CO(2). At concentrations ranging from 0.7 to 5.6 microM, ANT inhibited the growth of population in a concentration-dependent manner and EC(50) calculated amounted to 1.6 microM. At concentrations from 0.7 to 4.2 microM ANT stimulated respiration and inhibited the intensity of photosynthesis but did not affect chlorophyll content in the cells. ANT influenced chlorophyll a fluorescence parameters, measured by OJIP test (O, J, I and P are the different steps of fluorescence induction curve). ANT diminished the performance index (PI), the yield of primary photochemistry (phi(Po)), the yield of electron transport (phi(Epsilonomicron), the efficiency of moving the electron beyond Qa(-) (Psi(0)) and the fraction of active oxygen evolving complexes (OEC). The fraction of active PS II reaction centres in the treated samples dramatically dropped. The most pronounced changes in ANT-treated cells were observed in the stimulation of energy dissipation parameter (DI(0)/RC). The only OJIP parameter that was not influenced by ANT was energy absorption by photosynthetic antennae (ABS). The results lead to a conclusion that the inhibition of photosynthesis may be a consequence of unspecific ANT-membrane interaction, resulting from hydrophobic character of this hydrocarbon.  相似文献   

3.
The response of tobacco plants (Nicotiana tabacum L.)--non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L.--to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 microM CdCl(2) resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 microM CdCl(2) led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants.  相似文献   

4.
Exposure to moderate concentrations (90-500 microg SO(2) m(-3)) of SO(2) for 5-30 days caused a decrease in the photosynthetic rate. Only the lowest concentration (30 microg SO(2) m(-3)) increased photosynthesis. There was hardly any recovery in photosynthesis after the exposure. All exposure concentrations increased dark respiration. However, the lowest concentration had the smallest effect. Exposure to high concentration (2320 microg SO(2) m(-3)) of SO(2) for 5 h caused a strong decrease in the photosynthetic rate but there was a complete recovery within 2 weeks.  相似文献   

5.
One of the limits of Cd2+-phytoextraction is the high toxicity of this metal to plants. Growth restriction, chlorosis and necrosis are usually accompanied with a large disturbance of the uptake of essential elements. This work aims to study the effects of cadmium (Cd2+) on potassium (K+), calcium (Ca2+) and nitrogen (N) acquisition, and their consequences on growth in two halophytes species: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Seedlings were grown for 30 days in split-root conditions. One half of the root system was immersed in complete nutrient solution (Basal medium (B)) supplemented with 100 microM Cd2+, and the other half was immersed in a Cd2+-free medium, containing all nutrients (B/Cd plants) or deprived of potassium ((B-K)/Cd) or calcium ((B-Ca)/Cd) or nitrogen ((B-N)/Cd). Using this approach, we demonstrated that K+ and Ca2+ uptake was impaired in roots exposed to Cd2+. Concerning N, we noticed no indication of uptake inhibition by Cd2+. However, restriction of K+ uptake by roots was compensated by an increase in the K+-use efficiency, so that growth was not inhibited. Calcium uptake was strongly limited by Cd2. This inhibition was accompanied by a reduction in growth of ((B-Ca)/Cd) plants. Thus, we conclude that Cd2+ limits growth of both halophytes through restriction imposed on Ca2+ uptake. We suggest that the increase of Ca2+ availability in soils could improve the growth of both species in the presence of Cd2+. This would be essential for improving their utility for extraction of this metal by from salty contaminated soils.  相似文献   

6.
Lu CM  Chau CW  Zhang JH 《Chemosphere》2000,41(1-2):191-196
Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.  相似文献   

7.
Mustafa G  Singh B  Kookana RS 《Chemosphere》2004,57(10):1325-1333
The transport and bioavailability of cadmium is governed mainly by its adsorption-desorption reactions with minerals such as goethite--a common iron oxide mineral in variable charged and highly weathered tropical soils. Soil factors such as pH, temperature, solution Cd concentration, ionic strength and ageing affect Cd adsorption on goethite. The desorption behaviour of Cd from goethite at low concentrations is not fully understood. This study investigates the adsorption-desorption of Cd at low Cd concentrations (Cd adsorbed on goethite from 20 to 300 microM Cd solutions) in Na and Ca nitrate solutions of 0.03 M nominal ionic strengths. Synthetic goethite prepared by ageing a ferric hydroxide gel at high pH and room temperature was used for Cd adsorption and desorption studies. For desorption experiment 10 successive desorptions were made for the whole range of initial Cd concentrations (20-300 microM) in the presence of 0.01 M Ca(NO3)2 or 0.03 M NaNO3 solutions. Cadmium adsorption was found to be higher in Na+ than Ca2+ probably due to the competition of Ca2+ ions with Cd2+ ions for adsorption sites on the surfaces of goethite. The effect of index cation on Cd adsorption diminished with increase in pH from 5.0 to 6.0. Cadmium desorption decreased with increase in pH from 5.0 to 6.0 in both Na and Ca systems. After 10 successive desorptions with 0.03 M NaNO3 at the lowest initially adsorbed Cd approximately 45%, 20% and 7% of the adsorbed Cd was desorbed at pH 5.0, 5.5 and 6.0, respectively. The corresponding desorptions in the presence of 0.01 M Ca(NO3)2 were 49%, 22% and 8%, respectively. The Freundlich parameter, k, based on each progressive step of desorption at different adsorbed concentration increased with increasing desorption step, which may indicates that a fraction of Cd was resistant to desorption. Low Cd desorbability from goethite may be due to its specific adsorption and/or possibly as a result of Cd entrapment in the cracks or defects in goethite structure.  相似文献   

8.
Wu FB  Chen F  Wei K  Zhang GP 《Chemosphere》2004,57(6):447-454
Hydroponic experiment was carried out to study the effect of three Cd levels on glutathione (GSH), free amino acids (FAA), and ascorbic acid (ASA) concentration in the different tissues of 2 barley cultivars with different Cd tolerance. Cadmium concentration in both roots and shoots increased with external Cd level, while biomass and ASA concentration declined, and Wumaoliuling, a Cd-sensitive genotype was more affected than ZAU 3, a Cd-tolerant genotype. The effect of Cd on GSH concentration was dose- and time-dependent. In the 5 d exposure, root GSH concentration increased in 0.5 microM Cd treatment compared with control, but decreased significantly in 5 microM Cd treatment, irrespective of genotypes. However, in the 10 d exposure, GSH concentration in all plant tissues decreased with increasing Cd levels in the culture medium, and Wumaoliuling was much more affected than ZAU 3. Cadmium treatment greatly altered FAA concentration and composition in plants. The effect of Cd on glutathione (Glu) concentration in roots varied with genotypes. ZAU 3 showed a steady increase in root Glu concentration in both 0.5 and 5 microM Cd treatments, while Wumaoliuling was decreased by 38.0% in 5 microM Cd treatment, compared with the control. The results indicate that GSH and ASA are attributed to Cd tolerance in barley plants, and the relative less reduction in GSH concentration in ZAU 3 under Cd stress relative to the control may account for its higher Cd tolerance.  相似文献   

9.
We have presented changes in the photosynthetic apparatus activity of Arabidopsis thaliana plants occurring within 15-144 h of 100 microM Cu or Cd action with regard to jasmonate (JA) as well as expression of the oxidative stress and non-enzymic defense mechanisms. The inhibitory effect of both heavy metals related to developing dissipative processes and lipid peroxide formation was expressed in dark-adapted state after the longest time as a decrease in potential quantum yield of PSII. In dark- and light-adapted state the heavy metals affected the enzymic phase of photosynthesis already from the 15th hour, which was related to the lipid peroxide formation. Photochemical quenching decrease was induced after 48th hour and did not show a close correlation with the JA pathway. Blockade of endogenously formed JA by propyl gallate decreased the effect of Cu and Cd on both the whole photosynthetic apparatus starting from the 48th hour and on the primary photochemistry of PSII after 144 h. In the case of Cu the effect was related to a lipid peroxidation decrease and to an increase in glutathione and phytochelatin (PC) levels, but in the case of Cd to lipid peroxidation, O.2- and especially to PCs increase. The obtained results indicated that JA after the longest time might enhance the sensitivity of A. thaliana to Cu and Cd stress. Asc enhanced toxic action of Cu and Cd after 15 h, but after a longer time it diminished the influence of Cd (but not Cu) on photosynthetic activity.  相似文献   

10.
White oak (Quercus alba L.) seedlings were exposed to charcoal-filtered air or to above-ambient ozone concentrations for 19-20 weeks during each of two growing seasons in continuously stirred tank reactors in greenhouses. Ozone treatments were 0.15 ppm (300 microg m(-3)) for 8 h day(-1), 3 days week(-1) in 1988, and continuous 15% above ambient in 1989. The seedlings were grown in forest soil watered twice weekly with simulated rain of pH 5.2. Responses of net photosynthesis to photosynthetically active radiation and intercellular CO(2) concentration were measured three times each year. There were no significant differences in light-saturated net photosynthesis or stomatal conductance, dark respiration, quantum or carboxylation efficiencies, and light or CO(2) compensation points on any date between control and ozone-exposed seedlings.  相似文献   

11.
Singh S  Eapen S  D'Souza SF 《Chemosphere》2006,62(2):233-246
Bacopa monnieri L. plants exposed to 10, 50, 100 and 200 microM cadmium (Cd) for 48, 96 and 144 h were analysed with reference to the accumulation of metal and its influence on various enzymatic and non-enzymatic antioxidants, thiobarbituric acid reactive substances (TBARS), photosynthetic pigments and protein content. The accumulation of Cd was found to be increased in a concentration and duration dependent manner with more Cd being accumulated in the root. TBARS content of the treated roots and leaves increased with increase in Cd concentration and exposure periods, indicating the occurrence of oxidative stress. Induction in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) was recorded in metal treated roots and leaves of B. monnieri. In contrast, a significant reduction in catalase activity in Cd treated B. monnieri was observed. An increase was also noted in the levels of cysteine and non-protein thiol contents of the roots of B. monnieri followed by a decline. However, in leaves, cysteine and non-protein thiol contents were found to be enhanced at all the Cd concentrations and exposure periods. A significant reduction in the level of ascorbic acid was observed in a concentration and duration dependent manner. The total chlorophyll and protein content of B. monnieri decreased with increase in Cd concentration at all the exposure periods. Results suggest that toxic concentrations of Cd caused oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, B. monnieri is able to combat metal induced oxidative injury involving a mechanism of activation of various enzymatic and non-enzymatic antioxidants.  相似文献   

12.
Dong J  Wu F  Zhang G 《Chemosphere》2006,64(10):1659-1666
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.  相似文献   

13.
Qiu RL  Zhao X  Tang YT  Yu FM  Hu PJ 《Chemosphere》2008,74(1):6-12
A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

14.
Some plants have high ability to absorb heavy metals in high concentrations. In this study, Halimione portulacoides was tested in conjunction with citric acid, in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Two different concentrations of chelator were used combined with two heavy metal concentrations. When 25microM of citric acid was applied, Cd uptake and translocation was enhanced while for Ni these processes were almost inhibited. Increasing citric acid concentration to 50microM, Ni absorption decreased by the roots while for Cd there was still an increase in root uptake. Analysing translocation with this concentration of chelator, a decreased metal content in the upper organs for both metals was observed. While for Cd an optimal concentration of 25microM of citric acid was observed for phytoremediative processes, for nickel neither concentrations of chelator showed advantages for application in this remediative method.  相似文献   

15.
Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield.  相似文献   

16.
The interactions between Zn and Cd on the concentration and tissue distribution of these metals in lettuce and spinach were studied at levels corresponding to background and Zn-Cd contaminated sites. Plants were grown in nutrient solutions containing 0.398-8.91 microM Zn and 0.010-0.316 microM Cd. Cadmium accumulated more in old than in young leaves of both crops at any solution Cd level, whereas Zn followed that pattern only at Zn levels > or = 3.16 microM. Increasing solution Cd increased Zn concentrations in young leaves of lettuce but not of spinach, regardless of Zn levels. Cadmium concentrations in young leaves of both crops decreased exponentially with increasing solution Zn at low (0.0316 microM) but not at high (0.316 microM) solution Cd. The Zn: Cd concentration ratios in young leaves of lettuce and spinach grown at 0.316 microM Cd became greater as the solution Zn increased. Cadmium and Zn concentrations in young leaves were related more closely to the relative concentrations of Zn and Cd in solution than were the concentrations in old leaves, especially in lettuce. Studies of Zn-Cd interactions and Cd bioavailability should differentiate between basal and upper leaves of lettuce and spinach. Compared to Cd-only pollution, Zn-Cd combined pollution may not decrease Cd concentrations in lettuce and spinach edible tissues, but because it increases their Zn concentrations it lowers plant Cd bioavailability.  相似文献   

17.
Oats (Avena sativa L. cv Titus) were exposed to low concentrations of O3 in an assimilation chamber system. Net photosynthesis (net CO2 uptake), measured before and after O3 fumigation, showed significantly different responses for leaves of different age. The oldest active leaf was the most sensitive to O3. Net photosynthesis was depressed after 2 h with 0.075 ppm (150 microg m(-3)) O3. For leaves exposed to 0.150 ppm (300 microg m(-3)) O3 for 2 h, net photosynthesis was reduced significantly for 4 h, after which recovery occurred, nearly reaching the preexposure level 19 h after the exposure. Dark respiration was initially more than doubled after exposure to 0.130 ppm (260 microg m(-3)) O3. There was no visible injury after any of the experiments. The results indicate that O3 may cause crop losses through effects on photosynthesis even in Scandinavia, where a typical O3 episode lasts 1 to 2 h, and the concentration seldom exceeds 0.150 ppm.  相似文献   

18.
Effects of ozone impact on gas exchange and chlorophyll fluorescence of juvenile birch (Betula pendula) stems and leaves were investigated. Significant differences in the response of leaves and stems to ozone were found. In leaves, O3 exposure led to a significant decline in photosynthetic rates, whereas stems revealed an increased dark respiration and a concomitant increase in corticular photosynthesis. In contrast to birch leaves, corticular photosynthesis appeared to support the carbon balance of stems or even of the whole-tree under O3 stress. The differences in the ozone-response between leaves and stems were found to be related to ozone uptake rates, and thus to inherent differences in leaf and stem O3 conductance.  相似文献   

19.
Cadmium (Cd) is a widely spread pollutant and can be easily taken up by crop from soil, resulting in a serious health issue for humans. The objective of this study was to comparatively investigate the photosynthetic activity, chlorophyll a fluorescence, chlorophyll contents, and spectral reflectance in mature and young leaves of soybean plants after being treated with different concentrations of Cd for 10 days. The photosynthetic rate, chlorophyll contents, actual photochemical efficiency of PSII, and photochemical quenching in the young leaves decreased more significantly with increasing concentrations of Cd in the nutrient solution, compared with those in the mature leaves, though the young leaves had less Cd concentrations. Thus, there was more excessive excited energy produced in the young leaves than that in the mature leaves. In the young leaves, due to more excessive excited energy, more reactive oxygen species may be generated, which further damaged the photosynthetic apparatus. It was supported by the fact that the decrease of reflectance in near-infrared wavelengths of the young leaves was more noticeable than that of the mature leaves. In addition, the chlorophyll a fluorescence transients of the young leaves was significantly different from that in the mature leaves, indicating that the electron transport of young leaves were inhibited much more severely than that of the mature leaves. These observations imply that the responses of photosynthetic activity of soybean leaves to Cd stress depend on their growth stage, and the Cd-induced inhibition of photosynthetic activity might be attributed to the decrease in chlorophyll contents and the decrease in mesophyll CO2 assimilation ability cause by the Cd, which further decreased the consumption of ATP and NADPH, leading to accumulation of NADPH on the acceptor sides of the PSI, and then feedback inhibited electron transport in chloroplasts.  相似文献   

20.
Sinha S  Saxena R  Singh S 《Chemosphere》2005,58(5):595-604
In the plant, Pistia stratiotes L., the effect of different concentrations of chromium (0, 10, 40, 80 and 160 microM) applied for 48, 96 and 144 h was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), cysteine, non-protein thiol, ascorbic acid contents and superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) activity of the plants. Both in roots and leaves, an increase in MDA content was observed with increase in metal concentration and exposure periods. In roots, the activity of antioxidant enzymes viz. SOD and APX increased at all the concentrations of Cr at 144 h than their controls. The GPX activity of the treated roots increased with increase in Cr concentration at 48 and 96 h of exposures, however, at 144 h its activity was found declined beyond 10 microM Cr. The level of antioxidants in the roots of the treated plant viz. cysteine and ascorbic acid was also found increased at all the concentrations of Cr at 144 h than their respective controls, however, an increase in the non-protein thiol content was recorded up to 40 microM Cr followed by decrease. The chlorophyll content decreased with increase in Cr concentrations and exposure periods. However, the protein content of both roots and leaves were found decreased with increase in Cr concentrations at all the exposure periods except an increase was recorded at 10 microM Cr at 48 h. In Cr treated plants, the no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for leaves chlorophyll and protein contents were 40 and 80 microM Cr, respectively after 48 h exposure while NOEC and LOEC for root protein content were 10 and 40 microM, respectively after 48 h. The analysis of correlation coefficient data revealed that the metal accumulation in the roots of the plant was found positively correlated with antioxidant parameters except SOD after 48 h of exposure, however, negatively correlated with most of all the parameters studied at 144 h in both part of the plant. It may be suggested from the present study that toxic concentrations of Cr cause oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, the higher levels of enzymatic and non-enzymatic antioxidants suggest the reason for tolerating higher levels of metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号