首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ burning is being utilized in the United States to remove oil from inland oil spills, usually when physical recovery is not feasible. Studies have found that habitats may recover from the effects of burning in less than a year under optimal conditions but recovery may take much longer. Policies authorizing the use of in situ burning across the US are very inconsistent. Some states use it routinely, but others do not allow it. Inland in situ burning can be a useful response tool and the federal government needs to issue more guidance to the states. Responders also need to collect more data on the environmental impacts of burning.  相似文献   

2.
In situ burning of inland and upland habitats is an alternative oil spill cleanup technique that, when used appropriately, may be more environmentally acceptable than intrusive manual, mechanical, and chemical treatments. There have been few published reports documenting the environmental effects of in situ burning in inland and upland habitats. Thus, this study, sponsored by the American Petroleum Institute, used two approaches to increase the knowledge base and improve the appropriate use of in situ burning: (1) detailed review of published and unpublished in situ burn case histories for inland and upland spills; and (2) summaries of fire effects and other information from the literature on fire ecology and prescribed burning. Thirty-one case histories were summarized to identify the state of the practice concerning the reasons for burning, favorable conditions for burning, and evaluations of burn effects. The fire ecology and effects summaries included information from the extensive knowledge base surrounding wildfire and prescribed burning (without oil) as a natural resource management tool, as well as fire tolerance and burning considerations for dominant vegetation types of the United States. Results from these two approaches should improve the application of in situ burning for inland and upland spills.  相似文献   

3.
This research note summarizes Spartina alterniflora and Sagittaria lancifolia sensitivity to oiling and in situ burning of applied oil. Experimental plots (2.4 m × 2.4 m × 0.6 m) were constructed in salt and freshwater marsh habitats and South Louisiana Crude (SLC) applied (2 l m−2) to stems and leaves of marsh plants of oil and oil/burn treatment plots. Burning was initiated mid-August when winds were calm and a 15-25 cm floodwater layer covered the marsh substrate. Vegetative responses (stem density, height, carbon assimilation and biomass production) were measured for approximately one year following the in situ burns. Application of oil and burning of SLC only had short-term detrimental effects on salt and freshwater marsh vegetation. About one year after burns, vegetative responses measured in oiled and oiled/burned plots approached or exceeded control (no oil or burn) values. Field results suggest, under our experimental conditions, in situ burning of spilled oil in S. alterniflora and S. lancifolia marshes may be a remediation operation to consider.  相似文献   

4.
This paper discusses processes and factors for estimating time period windows of in situ burning of spilled oil at sea. Time-periods of in situ burning of Alaska North Slope (ANS) crude oil are estimated using available data. Three crucial steps are identified. The First Step is to determine the time it takes for the evaporative loss to reach the known or established limitation for evaporation and compare this time-period with estimated time of ignition at the ambient wind and sea temperatures. The Second Step is to determine the water up-take of the spilled oil and compare it with the known or established limitation for water-in-oil content. The Third Step is to determine the necessary heat load from the igniter to bring the surface temperature of the spilled oil to its flash point temperature so that it will burn at the estimated time period for ignition of the slick.  相似文献   

5.
For over 10 years scientists have studied the effects of in situ burning of oil on air and water quality and potential related health issues. The recent Newfoundland Offshore Burn experiment, conducted by Environment Canada, was the culmination of several years of work. The results of this experiment found that ‘emissions from the in situ oil fire were lower than expected and all compounds and parameters measured were below health concerns at 150 m from the fire’ (The Newfoundland Offshore Burn Experiment—NOBE, Preliminary Results of Emissions Measurement). Polyaromatic Hydrocarbons (PAHs) were found to be lower in the soot generated from the fire than in the starting oil prior to the fire. The conclusion reached was that the environmental benefits resulting from the burning of oil spills far outweigh the potential air pollution caused from the smoke. These findings now open the door on the use of in situ burning of oil as a major tool to be used to mitigate environmental damage from oil spills.As a result of these and other test findings, Region 6 of the Regional Response Team (made up of the U.S. Coast Guard, The Minerals Management Service, The Department of Environmental Quality, The U.S. Environmental Protection Agency, and other state and federal agencies) had pre-approved the use of in situ burning of oil spills for offshore Louisiana and Texas. Other parts of the country and other countries are evaluating the use of in situ burning to combat oil spills. Now that the scientific community has weighed the environmental costs and benefits of in situ burning it is time to address the operational and procedural issues.  相似文献   

6.
The burning rate of a slick of oil on a water bed is characterized by three distinct processes, ignition, flame spread and burning rate. Although all three processes are important, ignition and burning rate are critical. The former, because it defines the potential to burn and the latter because of the inherent possibility of boilover. Burning rate is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil spill. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). Ignition has been studied to provide a tool that will serve to assess a fuels ease to ignite under conditions that are representative of oil spills. Two different techniques are used, piloted ignition when the fuel is exposed to a radiant heat flux and flash point as measured by the ASTM D56 Tag Closed Cup Test. Two different crude oils were used for these experiments, ANS and Cook Inlet. Crude oils were tested in their natural state and at different levels of weathering, showing that piloted ignition and flash point are strong functions of weathering level.  相似文献   

7.
In situ burning is an oil spill response technique or tool that involves the controlled ignition and burning of the oil at or near the spill site on the surface of the water or in a marsh (see Lindau et al., this volume). Although controversial, burning has been shown on several recent occasions to be an appropriate oil spill countermeasure. When used early in a spill before the oil weathers and releases its volatile components, burning can remove oil from the waters surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 95% (Advanced In Situ Burn Course, Spiltec, Woodinville, WA, 1997). In situ burning offers a logistically simple, rapid, inexpensive and if controlled a relatively safe means for reducing the environmental impacts of an oil spill. Because burning rapidly changes large quantities of oil into its primary combustion products (water and carbon dioxide), the need for collection, storage, transport and disposal of recovered material is greatly reduced. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994).However, there is a limited window-of-opportunity (or time period of effectiveness) to conduct successful burn operations. The type of oil spilled, prevailing meteorological and oceanographic (environmental) conditions and the time it takes for the oil to emulsify define the window (see Buist, this volume and Nordvik et al., this volume). Once spilled, oil begins to form a stable emulsion: when the water content exceeds 25% most slicks are unignitable. In situ burning is being viewed with renewed interest as a response tool in high latitude waters where other techniques may not be possible or advisable due to the physical environment (extreme low temperatures, ice-infested waters), or the remoteness of the impacted area. Additionally, the magnitude of the spill may quickly overwhelm the deployed equipment necessitating the consideration of other techniques in the overall response strategy (The Science, Technology, and Effects of Controlled Burning of Oil Spills at Sea, Marine Spill Response Corporation, Washington, DC, 1994; Proceedings of the In Situ Burning of Oil Spills Workshop. NIST. SP934. MMS. 1998, p. 31; Basics of Oil Spill Cleanup, Lewis Publishers, Washington, DC, 2001, p. 233). This paper brings together the current knowledge on in situ burning and is an effort to gain regulatory acceptance for this promising oil spill response tool.  相似文献   

8.
SINTEF Applied Chemistry has been working in the field of in situ burning since 1988, beginning with the first open water testing of the 3M fire proof boom which took place on Spitsbergen. In recent years, the focus of SINTEF's research activities in this area has been on the burning of emulsions. An experimental programme was initiated by NOFO in 1990 to study the in situ burning of water-in-oil (w/o) emulsions, as part of a wider NOFO programme ‘Oil spill contingency in Northern and Arctic waters’ (ONA). The research conducted under this programme has addressed many areas of in situ burning including:
  • •• study of processes governing burning emulsions
  • •• development of ignition techniques for emulsions
  • •• effect of environmental conditions on burning
  • •• burning crude oil and emulsions in broken ice
  • •• uncontained burning of crude oil and emulsions.
  相似文献   

9.
An experimental technique has been developed to study systematically the ignition, flame spread and mass burning characteristics of liquid fuels spilled on a water bed. The final objective of this work is to provide a tool that will serve to assess a fuel's ease of ignition, spread and sustaining a flame, thus, helping to better define the combustion parameters that affect in situ burning of oil spills.  相似文献   

10.
The burning rate of a slick of oil on a water bed is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil-spill. The total heat release, as a function of the pool diameter, is obtained from an existing correlation. It is assumed that radiative heat is absorbed close to the fuel surface, that conduction is the dominant mode of heat transfer in the liquid phase and that the fuel boiling temperature remains constant. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). The effect of weathering on the burning rate decreases with the weathering period and that emulsification results in a linear decrease of the burning rate with water content.  相似文献   

11.
A series of 14 mesoscale burns were conducted in 1991 to study various aspects of oil burning in situ. Extensive sampling and monitoring of these burns were conducted to determine the emissions. This was done at two downwind ground stations, one upwind ground station and in the smoke plume using a blimp and a remote-controlled helicopter. Particulate samples in air were taken and analyzed for polycyclic aromatic hydrocarbons (PAHs). PAHs were found to be lower in the soot than in the starting oil. Metals in the oil were found concentrated in the residue and could not be measured in soot samples using conventional industrial hygiene sampling techniques. Particulates in the air were measured by several means and found to be greater than recommended exposure levels only up to 150 m downwind at ground level. Combustion gases including carbon dioxide, sulphur dioxide and carbon monoxide did not reach exposure level maximums. These gases were emitted over a broad area around the fire and are not directly associated with the plume trajectory. Volatile organic compound (VOCs) emissions are extensive from fires, but the levels are less than those emitted from a non-burning test spill. Over 50 compounds were identified and quantified, several at possible levels of concern up to 200 m downwind. Water under the burns was analyzed; no analytes of concern could be found at the detection levels of the methods. The burn residue was analyzed for the same compounds as the air particulate samples. The residue contained elevated amounts of metals. PAHs were at a lower concentration in the residue than in the starting oil, however there is a slight differential concentration increase in some higher molecular weight species. Overall, indications from these mesoscale trials are that emissions from in situ burning are low in comparison to other sources of emissions and result in concentrations of air contaminants that are below exposure limits beyond 500 m downwind.  相似文献   

12.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of a fire-resistant boom to evaluate the anticipated performance of different booms. The ASTM F-20 committee has developed a draft standard, “Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom”; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a series of experiments were conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

13.
Most response plans for in situ burning of oil at sea call for the use of a fire-resistant boom to contain the oil during a burn. Presently, there is no standard method for the user of fire-resistant boom to evaluate the anticipated performance of different booms. The American Standard for Testing Materials (ASTM) F-20 Committee has developed a draft standard, `Standard Guide for in situ Burning of Oil Spills on Water: Fire-Resistant Containment Boom'; however, the draft provides only general guidelines and does not specify the details of the test procedure. Utilizing the guidelines in the draft standard, a second series of experiments was conducted to evaluate a protocol for testing the ability of fire-resistant booms to withstand both fire and waves.  相似文献   

14.
15.
During the period of 22 August–12 October 1998, seven commercial fire booms were involved in burn testing at the US Coast Guard Fire and Safety Test Detachment Facility in Mobile, Alabama in accordance with the proposed protocol, American Society for Testing and Materials-F20. Four of the seven booms survived the test sequence and were shipped from Mobile, Alabama to the Minerals Management Service’s OHMSETT facility for additional tests including first loss, gross loss, tow speed, oil loss rate, and critical tow speed. The four booms showed the same trend in response to various wave conditions; the long sinusoidal waves improved containment performance and the short choppy waves degraded performance. One of the four booms achieved slightly higher first and gross oil loss rate tests. One boom demonstrated superior stability at high tow speeds. The results of this test report are consistent with the evaluation of fire booms that had been previously tested at OHMSETT, but also show a slight increase in performance. The tests indicate that the existing fire booms can contain oil in currents up to 1 knot and in various wave conditions after being exposed to multiple burns. This information will be used by the Coast Guard to develop policies and procedures for the in situ burning (ISB) of oil during a spill.  相似文献   

16.
The use of solidifier in oil spill cleanup has been minimal due to lack of practical application method and in situ field testing and evaluation under various coastal and environmental conditions. Solidifiers are dry granular, hydrophobic polymers that react with oil and form a cohesive mass that floats on water. Unlike sorbents, the oil is retained in the solid mass allowing for easy removal. A field test was conducted in coastal Louisiana in which replicated open water enclosures were oiled with South Louisiana Crude. Granular solidifier was spread over oil and the solidified oil was then removed from the plots. Over 70% of the applied oil was recovered. Results demonstrated that solidifier may, under certain conditions, be an option for removing oil from wetlands.  相似文献   

17.
This study evaluated the feasibility of conducting in situ burning (ISB) using current technology on post-1967 major oil spills over 10 000 barrels in North America and over 50 000 barrels in South America and Europe. A diverse set of 141 spills representing various combinations of parameters affecting spill responses (e.g., spill size, oil type, weather conditions, sea temperature, and geographic location) were evaluated using four “Phase I” criteria: Distance to populated area, oil weathering, logistics, and weather conditions. In Phase I, a spill that failed to meet one of the four criteria was considered an “unsuccessful” candidate for ISB. In total, 47 of the 141 spills passed the Phase I analysis. The potential effect of the plume on populated areas was the most significant of the four Phase I criteria; 59 of the 141 spills did not pass Phase I because the incident occurred near a sizable city. Spills that met all four criteria were further evaluated using a “Phase II” analysis that applied additional criteria and considered individual spill circumstances to determine if the spill should be rated as a “successful”, “marginal call”, or “unsuccessful” ISB candidate. Fourteen spills were ultimately determined successful in the Phase II analysis, and 12 were designated marginal calls.  相似文献   

18.
Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery--no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56 N, 16°45 E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.  相似文献   

19.
Current oil-spill research funded by the US Department of the Interior, Minerals Management Service (MMS), emphasizes technology development in the fields of in situ burning, spill counter-measure standardization using large wave tank testing, remote sensing and oil-spill trajectory analysis. Research projects include efforts in large field observational programs, surface drifters, and modeling to support trajectory simulation in the Gulf of Mexico and the Santa Barbara Channel. Research progress is outlined with emphasis on data-sharing and collaborative efforts.  相似文献   

20.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号