首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Agricultural opportunities to mitigate greenhouse gas emissions   总被引:15,自引:0,他引:15  
Agriculture is a source for three primary greenhouse gases (GHGs): CO(2), CH(4), and N(2)O. It can also be a sink for CO(2) through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH(4) consumption. Managing N to match crop needs can reduce N(2)O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH(4) and N(2)O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint.  相似文献   

2.
The Pennsylvania greenhouse gas (GHG) emissions inventory presented in this paper provides detailed estimates of emissions and their sources for the six major categories of GHGs. The inventory was compiled using the current U.S. Environment Protection Agency methodology, which applies emissions factors to socioeconomic data, such as fossil energy use, vehicle miles traveled, and industrial production. The paper also contains an assessment of the methodology and suggestions for improving accounting with respect to process, sectoral, and geographic considerations. The study found that Pennsylvania emitted 77.4 million metric tons carbon equivalent of GHGs in 1990 and that this total increased by 3% to 79.8 million metric tons carbon equivalent by 1999. Despite this increase, however, the state's percentage contribution to the United States total declined during the decade. Pennsylvania's carbon dioxide (CO2) emissions from fossil fuels represented 92.4% of 1990 totals and declined to 90.5% in 1999. Electricity generation was the largest single source of CO2 emissions, being responsible for 38% of fossil fuel CO2 emissions in 1990 and 40% of the total in 1999. Transportation emissions accounted for the largest increases in emissions between 1990 and 1999, whereas industrial emissions accounted for the largest decrease. The overall trend indicates that Pennsylvania has been able to weaken the relationship between GHG emissions and economic growth.  相似文献   

3.
In this paper the authors have estimated for 1990 and 1995 the inventory of greenhouse gases CO2, CH4 and N2O for India at a national and sub-regional district level. The district level estimates are important for improving the national inventories as well as for developing sound mitigation strategies at manageable smaller scales. Our estimates indicate that the total CO2, CH4 and N2O emissions from India were 592.5, 17, 0.2 and 778, 18, 0.3 Tg in 1990 and 1995, respectively. The compounded annual growth rate (CAGR) of these gases over this period were 6.3, 1.2 and 3.3%, respectively. The districts have been ranked according to their order of emissions and the relatively large emitters are termed as hotspots. A direct correlation between coal consumption and districts with high CO2 emission was observed. CO2 emission from the largest 10% emitters increased by 8.1% in 1995 with respect to 1990 and emissions from rest of the districts decreased over the same period, thereby indicating a skewed primary energy consumption pattern for the country. Livestock followed by rice cultivation were the dominant CH4 emitting sources. The waste sector though a large CH4 emitter in the developed countries, only contributed about 10% the total CH4 emission from all sources as most of the waste generated in India is allowed to decompose aerobically. N2O emissions from the use of nitrogen fertilizer were maximum in both the years (more than 60% of the total N2O). High emission intensities, in terms of CO2 equivalent, are in districts of Gangetic plains, delta areas, and the southern part of the country. These overlap with districts with large coal mines, mega power plants, intensive paddy cultivation and high fertilizer use. The study indicates that the 25 highest emitting districts account for more than 37% of all India CO2 equivalent GHG emissions. Electric power generation has emerged as the dominant source of GHG emissions, followed by emissions from steel and cement plants. It is therefore suggested, to target for GHG mitigation, the 40 largest coal-based thermal plants, five largest steel plants and 15 largest cement plants in India as the first step.  相似文献   

4.
Environmental Science and Pollution Research - Greenhouse gas from rice production has become a great concern and the focus of a lot of research in recent years. The main aim of the study was to...  相似文献   

5.
Here we present an uncertainty analysis of NH3 emissions from agricultural production systems based on a global NH3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH3 emission from agricultural systems is 27–38 (with a mean of 32) Tg NH3-N yr−1, N fertilizer use contributing 10–12 (11) Tg yr−1 and livestock production 16–27 (21) Tg yr−1. Most of the emissions from livestock production come from animal houses and storage systems (31–55%); smaller contributions come from the spreading of animal manure (23–38%) and grazing animals (17–37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH3 emission comprise four parameters (N excretion rates, NH3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.  相似文献   

6.
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.

Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.  相似文献   


7.
The United Nations Framework Conventions on Climate Change (UNFCCC) asks their Parties to submit a National Inventory Report (NIR) for greenhouse gas (GHG) emissions on an annual basis. However, when many countries are quickly growing their economy, resulting in substantial GHG emissions, their inventory reporting systems either have not been established or been able to be linked to planning of mitigation measures at national administration levels. The present research was aimed to quantify the GHG emissions from an environmental sector in Taiwan and also to establish a linkage between the developed inventories and development of mitigation plans. The "environmental sector" consists of public service under jurisdiction of the Taiwan Environmental Protection Administration: landfilling, composting, waste transportation, wastewater treatment, night soil treatment, and solid waste incineration. The preliminary results were compared with that of the United States, Germany, Japan, United Kingdom, and Korea, considering the gaps in the scopes of the sectors. The GHG emissions from the Taiwanese environmental sector were mostly estimated by following the default methodology in the Intergovernmental Panel on Climate Change guideline, except that of night soil treatment and waste transportation that were modified or newly developed. The GHG emissions from the environmental sectors in 2004 were 10,225 kilotons of CO2 equivalent (kt CO2 Eq.). Landfilling (48.86%), solid waste incineration (27%), and wastewater treatment (21.5%) were the major contributors. Methane was the most significant GHG (70.6%), followed by carbon dioxide (27.8%) and nitrous oxide (1.6%). In summary, the GHG emissions estimated for the environmental sector in Taiwan provided reasonable preliminary results that were consistent and comparable with the existing authorized data. On the basis of the inventory results and the comparisons with the other countries, recommendations of mitigation plans were made, including wastewater and solid waste recycling, methane recovery for energy, and waste reduction/sorting.  相似文献   

8.
Environmental Science and Pollution Research - Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like...  相似文献   

9.
10.
Landfills are among the major sources of anthropogenic methane (CH4) estimated to reach 40?×?109kg per year worldwide by 2015 (IPCC, 2007 IPCC. 2007. Intergovernmental Panel on Climate Change, Synthesis Report on Contributions of Work Groups 1, 2, and 3 to the Fourth Assessment Report Core Writing Team, Edited by: Pauchar, R.K. and Reisinger, A. Geneva, Switzerland: IPCC.  [Google Scholar]). A 2½-year field experiment was conducted at a closed landfill in western Michigan where methanotrophs, methane-consuming bacteria, were stimulated by nutrient addition to the soil without significantly increasing biogenic nitrous oxide (N2O) production. The effects of the nitrogen amendments (KNO3 and NH4Cl), phenylacetylene (a selective inhibitor of nitrifying bacteria that contribute to N2O production), and a canopy (to reduce direct water infiltration) on the vertical soil gas profiles of CH4, CO2, and O2 were measured in the top meter of the soil. Methane and nitrous oxide fluxes were calculated from the corresponding soil gas concentration gradients with respect to depth and a Millington–Quirk diffusivity coefficient in soil derived empirically from soil porosity, water content, and diffusivity coefficients in air from the literature. Methane flux estimates were as high as 218.4 g m?2 day?1 in the fall and 12.8 g/m?2 day?1 in the summer. During the spring and summer, CH4 fluxes were reduced by more than half by adding KNO3 and NH4Cl into the soil as compared to control plots, while N2O fluxes increased substantially. The concurrent addition of phenylacetylene to the amendment decreased peak N2O production by half and the rate of peak methane oxidation by about one-third. The seasonal average methane and N2O flux data were extrapolated to estimate the reduction of CH4 and N2O fluxes into the atmosphere by nitrogen and inhibitor addition to the cover soils. The results suggest that such additions coupled with soil moisture management may provide a potential strategy to significantly reduce greenhouse gas emissions from landfills.

Implications The results of a 2½-year study of effects of nutrient stimulation on methane oxidation in landfill cover soils demonstrates that nutrient addition does decrease methane emissions. The work further underscores the control which soil moisture exerts on methane oxidation. Water management is critical to the success of methane oxidation strategies.  相似文献   

11.
The objective of the study is to empirically examine the air pollution, greenhouse gas (GHG) emissions and low birth weight in Pakistan through the cointegration and error correction model over a 36-year time period, i.e., between 1975 and 2012. The study employed the Johansen cointegration technique to estimate the long-run relationship between the variables, while an error correction model was used to determine the short-run dynamics of the system. The study was limited to the following variables, including carbon dioxide emissions, methane emissions, nitrous oxide emissions, GHG emissions, and low birth weight in order to manage robust data analysis. The results reveal that air pollution and GHG emissions significantly affects the low birth weight in Pakistan. In the long run, carbon dioxide emissions act as a strong contributor for low birth weight, as the coefficient value indicates there is a more elastic relationship (i.e., ?1.214, p?p?p?相似文献   

12.
城市污水污泥处置方式的温室气体排放比较分析   总被引:2,自引:0,他引:2  
针对我国现在主流的城市污水污泥处置方法:填埋,焚烧,堆肥。用IPCC中推荐的方法和缺省值,对处置过程中产生的温室气体的直接排放、间接排放和替代排放做了计算和分析。填埋过程计算排放的温室气体有CH4,焚烧过程计算排放的有温室气体CO2和N2O,堆肥过程计算的排放的有温室气体CO2和N2O,最终比较的结果都折算成CO2的排放。结果表明,污泥填埋、焚烧、堆肥所产生的CO2的净排放量分别为695.847 kg CO2/t、443.643 kg CO2/t、511.817 kgCO2/t。由于考虑了堆肥以后的有机肥利用,从减排以及污泥资源化的角度分析,得出堆肥是相对好的污泥处置方式。  相似文献   

13.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore's contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

Implications Singapore is widely recognized for its environmental achievements and often cited as a model of a high-density, livable, and sustainable city. This article reviews available information with the aim to provide a reference for future scientific research of strategic relevance for Singapore's air quality and greenhouse gas mitigation management under a multipollutant framework. However, the limited publicly accessible data and little scientific information prevent a comprehensive assessment of the local air quality and greenhouse gas emissions. Singapore's dynamic economy and strong profile in advanced science and technological innovation have the potential to enhance the research agenda in this area, which is not yet well developed in tropical cities.  相似文献   

14.
Environmental Science and Pollution Research - Antibiotics are commonly used in intensive farming, leading to multiple antibiotic residue in livestock waste. However, the effects of multiple...  相似文献   

15.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.  相似文献   

16.
17.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   

18.
Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.  相似文献   

19.
Environmental Science and Pollution Research - The water industry plays an important role in reducing greenhouse gas (GHG) emissions and therefore, moving to a low-carbon urban water cycle is of...  相似文献   

20.
Environmental Science and Pollution Research - The average nutrient concentrations values presented in Table 1 on page 4 in the publication have the unit mg L?1 for the mineral nutrients Fe,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号