首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
路堤荷载下带桩帽刚性桩复合地基桩土应力比分析   总被引:3,自引:0,他引:3  
路堤一般由填土、碎石等散体材料组成,刚性桩复合地基中,桩土刚度差异较大引起的桩土间沉降差异,会导致路堤内部出现相对竖向位移。通过路堤填土的受力平衡分析,根据桩土差异沉降,求解出桩帽和桩帽间土体的应力分配,并结合桩帽下应力分配得出桩身应力,最终求解出桩土应力比及桩的荷载分担比例。工程实例监测结果验证了文中计算公式的适用性和可靠性。通过分析计算结果和实测结果,得出了一些路堤荷载下刚性桩复合地基的承载规律,可供理论研究和工程设计参考。  相似文献   

2.
基于路堤荷载下桩土非等应变条件和考虑了桩土相互作用、桩间土竖向与径向位移、桩土侧面产生相对滑移以及桩侧产生负摩阻力等特点的复合地基桩间土竖向变形模式,推导了水泥土桩复合地基桩间土沉降的理论计算公式,并以桩土单元体范围内的桩间土平均沉降值作为复合地基沉降,进一步推导了水泥土桩复合地基总沉降量、下卧层压缩变形量的理论计算表达式(两者之差即为加固区压缩变形量)。理论分析表明,复合地基加固区压缩量小于同深度天然地基压缩量,复合地基下卧层压缩量小于天然地基下卧层压缩量,复合地基总沉降量小于天然地基总沉降量。同时,理论计算结果与有限元计算结果以及现场实测结果三者比较一致。  相似文献   

3.
CFG桩复合地基加固高速公路软基的现场试验研究   总被引:3,自引:0,他引:3  
CFG桩复合地基处理高速公路软基的设计参数是否合理,应看其实际发挥的承载能力及承载时变形的性状。通过对CFG桩复合地基桩、土应力和表面沉降的现场观测,研究了路堤荷载下CFG桩复合地基桩顶、桩间土的应力和沉降变化规律,根据实测数据分析了褥垫层厚度、桩间距及桩体强度等设计参数的合理性。结果表明,路堤荷载下,CFG桩、土最终可达到变形协调,桩、土应力比与桩、土沉降差有着密切的关系,疏桩形式时桩间土承担着大部分荷载;同时,CFG桩复合地基作为路堤荷载的地基时,可设计为桩间距较大的疏桩形式,桩体设计强度可以取得低一些,褥垫层厚度也应适当取大。  相似文献   

4.
为探索中低压缩性土短桩桩-网复合地基荷载传递规律及变形特性,依托赣龙(赣州-龙岩)高速铁路工程背景,借助现场测试数据,分析路堤填筑过程中桩—土应力/荷载分担比、地基沉降及侧向变形规律.结果 表明:短桩桩-网复合地基能够有效传递上部附加应力至桩端土层,土压力对上部荷载变化敏感度小于高压缩性软土桩-网复合地基;稳定时桩—土荷载分担比约为50%,桩与土同时发挥承载功效较好;地基沉降在填筑期达到占总沉降90%,侧向变形沿深度呈"弓"型分布,最大侧向变形25 mm,约为高压缩性软土桩-网复合地基60%;桩—土应力对上部荷载变化敏感性高于地基沉降,可依桩—土应力比变化判别地基沉降状态,达到评判工后沉降控制效果目的 .  相似文献   

5.
刚性长短桩复合地基有许多特点,如桩体均为刚性、短桩及长桩桩端为低压缩或中压缩性土等。长短桩复合地基的设计理论目前仍处于研究阶段,现行规范中尚无有关其强度及变形的具体计算方法。重点探讨了饱和软粘土体上采用刚性长短桩复合地基的强度及变形理论,并提出了适用于工程应用的实用计算方法。  相似文献   

6.
当前工程建设中受土体侧移作用影响的桩基问题越来越突出,桩侧土压力是桩?土相互作用研究中的重要问题,并且受群桩效应影响很大,运用岩土数值计算程序 FLAC3D ,针对粘土饱和不排水情况进行了平面应变数值模拟研究,土体采用摩尔?库伦理想弹塑性本构关系,桩基采用线弹性本构关系,桩?土之间建立接触面。研究结果表明,桩周粘结力对桩侧极限土压力有明显影响,达到桩侧极限土压力所需要的桩土相对位移随 E/Cu 的增大而减小。单排桩时,随着桩间距增大桩土荷载分担比降低,桩侧极限土压力值增大,达到极限土压力时所需要的桩土相对位移增大。双排桩时,当桩间距大约为 2D 时加筋和遮拦效应影响范围比较小,然后随桩间距增大加筋和遮拦效应影响范围增大,而排间距的增大会使遮拦和加筋作用降低,当排间距大于 6D 后遮拦和加筋效应基本消失,桩间距和排间距的增大都使达到桩侧极限土压力所需要的桩土相对位移量增大,并将计算结果与先前学者试验结果进行了对比与分析,具有较好的一致性并有所发展。  相似文献   

7.
长短桩复合地基承载力发挥系数取值研究   总被引:1,自引:0,他引:1  
根据水泥土长短桩复合地基试验结果,得到了考虑荷载水平的水泥土长短桩复合地基承载力计算公式。然后,考虑复合地基中桩体、桩间土和复合地基沉降量之间的相互关系,利用现场载荷试验成果,对单桩复合地基和长短桩复合地基的桩间土承载力发挥系数和合理的s/b取值范围进行了对比研究,得到了长短桩复合地基桩间土承载力发挥系数的计算方法。结果表明:长短桩复合地基桩体先于桩间土出现破坏,桩体极限荷载点对应的复合地基s/b值为s/b的上限;当垫层模量Ec为100M Pa时,长短桩复合地基s/b上限为0.0034,对应的桩间土承载力发挥系数为0.29。  相似文献   

8.
桩土刚度比及布桩位置直接影响抗滑桩的桩身内力分布及边坡加固效果。采用数值模拟的方法,考虑不同桩土刚度比和布桩位置,分别进行了计算分析。结果表明:(1)桩身剪力近似呈反"S"型分布,弯矩呈现向桩后的凸型分布,且桩身剪力和弯矩均随桩土刚度比的增加而增大,呈现先陡后缓的变化趋势;(2)桩位一定时,桩身正负最大剪力分别出现在桩身1/2和1/4高度位置,对应位置应加强抗剪箍筋的配置;桩身弯矩最大的位置出现在桩身1/3高度位置,即边坡滑带所在的位置,对应位置应加强抗弯钢筋的配置;(3)布桩于边坡中部及两侧时,加固后边坡的安全系数提高明显,桩身剪力和弯矩较大,而且对塑性区有明显的隔断作用。考虑到一般边坡中部的滑体厚度较深,在坡体中部位置布桩无论在技术上还是经济上都不太合适,因此,建议布桩于边坡中部两侧的位置,可取得较好的加固效果。  相似文献   

9.
堤防水泥土搅拌桩复合地基稳定分析及应用研究   总被引:2,自引:0,他引:2  
提出将水泥搅拌桩运用于堤防工程的地基加固,以提高堤防工程的稳定性。分析了水泥搅拌桩的作用机理和水泥土搅拌桩复合地基承载特点,采用面积加权法计算复合土层的抗剪强度,在此基础上进行了复合地基堤防整体稳定计算。结合某河道整治工程实例,探讨了堤防地基水泥搅拌桩的加固效果,评价了不同工况下堤防的稳定性。研究表明,采用水泥搅拌桩加固堤防地基,可以有效提高地基的承载力和堤防的稳定性,且施工快捷,运用效果较好,可为类似工程提供参考。  相似文献   

10.
软土场地碎石桩因具备桩体侧向变形大、超孔隙水压力消散慢的问题,导致出现基础沉降大、土体固结排水速度慢等工程病害。路堤下采用加筋碎石桩复合地基是处理软土场地的主流方法。本文采用二维有限元方法,建立考虑路堤填筑过程的软土场地路堤-加筋碎石桩复合地基数值模型,探讨了加筋碎石桩复合地基承载力的影响因素。基于达西定律和比奥固结理论,分析高地下水位场地条件下加筋体刚度和桩数对加筋碎石桩复合地基工作状态的影响规律。研究表明:增大褥垫层厚度和减小褥垫层模量均能够提高桩土应力比,改善桩顶应力集中的问题。与传统碎石桩相比,高地下水位条件下加筋碎石桩复合地基中超孔隙水压力消散速率快,桩数增加可以有效提高复合地基排水速率。  相似文献   

11.
为探讨近海复杂恶劣环境(台风超强风力、车辆冲击力或地震产生的复杂力等)下水平力H、弯矩M及扭矩T共同作用时的基桩桩身内力变形特性,基于传统有限杆单元法思想,获得了H-M-T受荷桩的基本单元刚度矩阵。然后,基于m法考虑桩周地基土的侧向约束作用,并计入H-M-T耦合效应,采用凝聚方法导得了具有简洁统一形式的桩身杆单元刚度矩阵,由此建立水平力、弯矩和扭矩组合作用下的桩身内力位移有限杆单元法计算模型,进而采用MATLAB编制出相应的分析计算程序。最后,结合近海工程算例进行了分析。结果表明:1文中提出的改进有限杆单元法能考虑桩周地基土的分层特性、不同边界条件及H-M-T的耦合效应;2相比单一考虑水平受荷,扭矩的存在加大了桩身的位移和内力;3H-M-T复杂受荷模式下,荷载传递存在有效传递深度,当相对深度z/L超过0.5后,桩身弯矩和剪力趋近于零,而扭矩显著减小。  相似文献   

12.
建立了热-渗流-力(T-H-M)三场耦合能量桩有限元数值分析模型,研究了力学荷载组合不同热聚集度(桩的放热量与吸热量之比)温度荷载下黏土地基中能量桩的长期热-力学特性,包括桩身温度、桩头沉降、桩身轴向应力、 地基土温度和超孔隙水压力特性等。计算结果表明:冷-热平衡时桩头沉降随温度荷载循环的增加逐渐增大,桩头发生沉降累积,桩身轴向应力和地基土温度变化的幅值不随温度荷载循环而变化。当桩的放热量大于吸热量时, 桩身温度随温度荷载循环的增加而升高,桩头沉降随之减小,但热荷载循环对桩身轴向应力没有影响。桩周土温度随热循环的增加而逐渐增大,产生热聚集现象。温度荷载的热聚集度数值越大,桩身和桩周土的温度越高,桩身最小压应力越大,桩头沉降越小。温度荷载引起的超静孔隙水压力数值很小。  相似文献   

13.
采用多场耦合有限元数值分析方法,研究砂土地基中悬浮能量桩的热-力学特性。结果表明,桩的升温引起附加轴向压应力、上部桩身负摩阻力和桩头隆起。桩的降温引起附加轴向拉应力、上部桩身正摩阻力和桩头沉降。对于给定的温度荷载,能量桩的热-力学响应主要取决于桩头力学荷载的数值,温度荷载引起的桩身附加轴向应力随力学荷载数值的增加而增大,力学荷载超过某一临界值之后保持不变。地基土的温度变化在径向很快衰减,影响范围约为20倍的桩径。能量桩的热-力学特性受桩头约束条件的影响很大。桩头约束越强,温度荷载引起桩身轴向应力数值越大。  相似文献   

14.
结合长江江苏镇江段某码头堆场地基采用真空联合堆载预压法加固处理工程,通过现场钻孔埋设孔隙水压力计,对长江漫滩相软土地基加固过程中孔隙水压力的发展变化过程进行了测试分析。结果表明:真空预压区,加固30d后地基中孔隙水压力变化基本稳定,且土中超静孔隙水压力的消散受该深度排水板中真空荷载的影响十分显著;排水板中真空荷载随深度衰减,衰减速率与排水板周围土层性质密切相关;通过现场测试得到排水板周围为长江漫滩相淤泥质粉质黏土时,真空荷载沿排水板深度衰减速率约为3kPa/m。  相似文献   

15.
开展了包裹碎石群桩复合地基振动台模型试验,分析了包裹碎石桩轴向动应力及桩土之间水平剪切应力的响应特性。结果表明:地震波作用下,包裹碎石桩轴向动应力沿桩身向下迅速衰减。在地震作用过程中,包裹碎石桩上部承受的水平应力较大。某一地震作用下,取包裹碎石桩桩顶水平应力时程曲线的最大值,发现该值随输入地震加速度波峰值(0.1g~0.4g)的增大先增大,之后随输入加速度波峰值(0.6g、0.9g)的增大而减小,这表明桩顶的剪切强度降低了。  相似文献   

16.
针对抗滑群桩设计理论方面存在的问题,即荷载传递及滑坡推力分配的不确定性,基于极限分析的上限定理,给出了一种抗滑群桩的设计方法,即人为增大第一排抗滑桩的桩间距,并按极限土压力公式设计,作用在第二排抗滑桩上的荷载则按照上限定理给出。根据上述思想,并结合滑坡能量安全系数的定义和多块体体系速度场计算方法,提出了抗滑群桩的一种设计理论。  相似文献   

17.
为研究能量桩的长期工作特性,通过引入Masing准则来建立桩-土荷载传递循环加卸载曲线,进而基于热力荷载传递原理来模拟循环温变荷载作用下能量桩的响应,然后基于现场原位试验,验证模型的可行性,最后研究不同冷热循环方式和桩顶荷载水平对能量桩长期响应的影响。研究结果表明:①循环温变荷载作用会使能量桩桩顶沉降和桩顶轴力不断增大,并最终趋于稳定;②相较于只提供制冷需求的能量桩循环方式,同时提供制冷制热需求的能量桩更容易引起桩顶残余沉降和残余温度应力的持续积累;③相较于桩顶轴力增量,建筑荷载的增大更容易引起桩顶残余沉降的积累。  相似文献   

18.
作为一种新型边坡支挡结构,桩板式挡土墙已被广泛应用于路堑、路堤以及滑坡等特殊支挡工程之中,但目前对作用于桩间挡土板上土压力的研究仍严重滞后于工程实践。为合理确定桩间挡土板上的土压力,借助桩板式挡土墙桩-板后土体土拱合理拱轴线的假定建立了相应的土拱计算模型,并假定拱后滑坡推力为均布荷载,基于土拱静力平衡条件及桩-板后土拱处于极限平衡状态,进而根据莫尔-库伦强度理论确定土拱竖向应力,藉此推导出考虑滑坡推力作用的桩间挡土板土压力计算公式。并将其与传统方法(卸荷拱法和拟化筒仓法)进行了对比分析,结果表明:本文方法更能反映作用于桩间挡土板上实际土压力的大小,且可考虑来自桩-板后土体传递而来滑坡推力的作用,其中传统方法仅是本文方法的一种特殊形式;桩间挡土板上的土压力随桩-板后土体粘聚力和内摩擦角增大而大致呈线性递减,并随拱后滑坡推力和桩跨比的增大而增大。研究成果可为桩板式挡土墙的合理设计提供参考。  相似文献   

19.
为探讨非均质地基中V-T联合受荷桩的承载特性,考虑地面处桩周土体剪切模量为非零值且随深度呈幂函数分布,计入桩-土接触面处位移非协调性及加载顺序的影响,基于剪切位移法和桩身荷载传递函数建立桩身位移控制方程,并引入相应力和位移边界条件,导出桩周土体在不同受力状态下桩身的内力位移解析解,进而推导出不同加载顺序下V-T联合受荷桩的承载力,从而得到其承载力包络图。V-T联合受荷桩参数分析结果表明:桩身承载力随长径比L/D增大而增大,而随桩侧土体剪切模量与极限摩阻力分布常数比n、桩土弹性模量比λ增大而减小;桩顶所受扭矩T不断增大时,其能承受的竖向力V随之变小并最终趋于零,且T→V承载力包络线始终处于V→T承载力包络线内侧。  相似文献   

20.
能量桩与地基土的热交换取决于建筑物的年能源需求,故能量桩每年受到冷-热循环作用。采用多场耦合有限元数值模拟方法,研究在力学荷载和随时间按正弦函数变化的温度荷载共同作用下悬浮能量桩的热-力学特性。结果表明,随着能量桩冷-热周期性的循环,温度荷载引起的桩身附加轴向应力、桩头附加竖向位移和桩侧附加剪应力也随时间周期性变化,且相位与温度荷载曲线的相位相同。桩升温最大时桩身轴向压应力达到最大值,桩降温最大时桩头沉降达到最大值。地基土的温度改变量随时间周期性地变化,其幅值在桩的中部深度附近最大,在桩二端深度附近较小。地基土温度的变化滞后于温度荷载。离桩越远,地基土的温度达到其最大值的时间越滞后。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号