首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
To improve the fire extinguishing efficiency of existing dry powders, a new type of superfine dry powder was prepared using magnesium hydroxide as an additive. In our study, a thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze the thermal decomposition of the synthesized powders. The temperature of thermal decomposition, weight loss, and other thermodynamic parameters of the fire extinguishing powders were analyzed to explain the performance advantages of the compound superfine powder. Through a small-scale fire experiment, the physical parameters of the extinguishing process—such as extinguish time, powder dosage, smoke concentration, and minimum extinguishing concentration—were quantified for the suppression of a diesel fire using the different powders; these parameters were used to evaluate the fire extinguishing capacity and toxic gas suppression ability of the powders. TGA demonstrated that the compound superfine powder decomposed more quickly and its thermal decomposition process was much shorter than those of the other powders. The DSC data indicated that the compound superfine powder could decrease the characteristic temperature at each stage and thus the powder absorbed the flame's heat more quickly and suppressed flame propagation. The fire extinguishing test demonstrated that the consumption of the three types of fire extinguishing powder decreased with an increase in the driving pressure, and the order of powder dosage was as follows: commercial dry powder > superfine powder > compound superfine powder. Similarly, the order of minimum extinguishing concentration was as follows: commercial dry powder > superfine powder > compound superfine powder. Furthermore, the compound superfine powder exhibited a greater capacity for controlling toxic and harmful gas emissions.  相似文献   

2.
Selecting a suitable flame-retardant powder is essential for preventing or reducing the risk of aluminium dust cloud explosions. Two types of retardant materials were studied, namely ABC powder (a flame-retardant powder mainly composed of ammonium dihydrogen phosphate dry powder) and melamine pyrophosphate powder (MPP). A specially designed rectangular pipe was used to examine the influences and mass fractions of the aforementioned flame retardants and the effects of compounds on maximum explosion pressure and maximum explosion pressure rate of increase. The results showed that the explosion-suppression effects of MPP powder were superior to those of ABC powder. Furthermore, the suppression effects of combining ABC and MPP to form compounds in various ratios were explored. The explosion-suppression effects of the single flame-retardant powders and flame-retardant powder compound were compared, which revealed that the effects of the flame-retardant compound were intermediate to those of ABC and MPP used separately. No synergistic effect was observed in the compound retardant. However, component mass fractions influenced the retardant properties of the compound. The suppression mechanism was investigated through thermal analysis, which revealed that the decomposition of the two flame-retardant powders was an endothermic process that generated inert gas. The addition of flame-retardant powder delayed the time required by aluminium to break through its oxide film. However, the thermal analysis curve of the compound overlapped those of the two single powders, and no new chemical reaction occurred. Thus, no change was observed in the efficacy of the flame-retardant properties.  相似文献   

3.
Electrostatic Powder coating which is a surface finishing technique has widely been used in paint industry since its invention in the 1960s. However, so far, insufficient attention has been paid to the powder fires and/or explosion hazards caused by electrostatic spark during coating process. This paper is a report of the electrostatic spark ignitability of aluminous coating powders (dry blend-type) used in practical electrostatic powder coating. The Hartman vertical-tube apparatus was used for the minimum ignition energy (MIE) test. Various aluminous coating powders, different with respect to the amount of aluminum pigment, were used in this study. Experimental results obtained in this study are as follows: (1) The aluminous coating powder was so sensitive that even an electrostatic spark with an energy as low as 10 mJ could ignite it. (2) The particle size of aluminous coating powder has a considerable effect on the ignitability when the aluminum pigment concentration is within 6 wt% of the practical coating powder manufacturing standards. Thus, the conventional expression for estimating the MIE can be useful when assessing the electrostatic hazards associated with aluminum coating powders.  相似文献   

4.
为改善普通碳酸氢钠干粉灭火剂(BC干粉)抑制食用油火时抗复燃性较差的不足,选择聚磷酸铵、溴化钾和一水合草酸钾作为添加剂,与普通BC干粉灭火剂混合配制成复合干粉灭火剂。通过全尺度模拟试验研究各种复合粉体对食用油火的灭火效果及其抗复燃性能。结果证明,普通BC干粉与一水合草酸钾复配而成的复合粉体针对食用油火的灭火效果和抗复燃性能在几种粉体中最佳。根据试验数据和各粉体的理化特性,对4种粉体的灭火效果差异作了详细的分析和讨论。  相似文献   

5.
In this paper, experimental investigations were performed for the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles to reveal the effects of the obstacles in this scenario. Two PCB piezo-electronic pressure transducers were used to acquire the pressure history, a Fastcam Ultima APX high-speed video camera was used to visualize both the process of the mixture explosion and its mitigation. The diameters of the coal dust, the types of obstacles and the volumes of ultra-fine water mist were varied in the tests. The parameters of the explosion overpressure and the range of critical volume flux of the ultra-fine water mist for explosion mitigation were determined. The results show that the mixture explosion and its mitigation are primarily influenced by the number, shape and set locations of the obstacles. When the volume flux of the water mist is larger than a certain amount, the mixture explosions and the effects of obstacles can be completely mitigated with the ultra-fine water mist.  相似文献   

6.
The effectiveness of superfine magnesium hydroxide powders and commercial dry powder in fire suppression were compared in a laboratory-scale, immovable fire suppression apparatus. The investigation focused on their suppression effectiveness under various pressures. It likewise studied the relationship between the powders’ surface structures and their effectiveness on fire suppression. The microcosmic structure of the powders was observed by scanning electron microscope (SEM), while the Thermal Gravity Analysis (TGA) technique was used to analyze the thermal behavior of the superfine magnesium hydroxide powders. By analyzing the results, it could be concluded that the pressure, the particle size, and the microcosmic structure of the powders’ surface mainly decide the capability of the powders to extinguish the fire. Comparing this with commercial dry powders, superfine magnesium hydroxide powders extinguished the fire in less than 10 s.  相似文献   

7.
To overcome the shortcomings of phosphorus-containing compounds (PCCs, not widely used) in fire suppression, the dry water powder containing phosphoric acid was analyzed for a new fire suppressant (SiO2-P). First, the fine conditions (solid-to-liquid ratio, stirring time and stirring speed) were determined to prepare the new powder. The particle size distributions and XPS of SiO2-P powder were analyzed. The TG tests were conducted to study the decomposition of powder, and there was a major decomposition peak. Second, the extinguishing time of SiO2-P powder was tested, which showed that the SiO2-P powder containing phosphorus species could significantly improve the fire suppression ability. In addition, the kinetic parameters of powder decomposition reaction were determined by genetic algorithm based on TG results. Last, based on the decomposition products and kinetic parameters, the burning velocity and mass fraction of free radicals of CH4/air flame with SiO2-P powder addition were studied theoretically. The results indicated that SiO2-P powder had great ability of reducing the burning velocity and scavenging free radicals. Furthermore, the suppression effects were analyzed, which indicated that the cooperation of H2O and P suppression effect dominated the suppression mechanism and resulted in the good suppression efficiency.  相似文献   

8.
The use of Coloured powder (Holi powder orcolour dust) has been largely used in India for their festivities. Due to their popularity is extensive around the world since the popularity of the parties and events with this kind of show is increasing considerably. Despite the fact of its extensive use, its highly flammable nature is poorly known. Currently, some serious accidents related to the Coloured powder have been registered. Coloured powder organic nature implies a significant increase in the probability to form an explosive atmosphere as their use includes dust dispersion, leading to explosion hazards as has been previously reported. Moreover, it is important to take into account the effects on the flammability of the additives and the colorings existing in the Coloured powder as they might increase the hazard. To properly understand Coloured powder potential for producing an explosive atmosphere, and the attached risk of dust explosions, several samples were tested. Coloured powder from 6 different manufacturers were gathered. Each manufacturer provided several colours (between 5 and 8) which were characterized through moisture content and particle size determination. Once each sample was characterized, screening tests were performed on each sample determining whether ignition was produced or not. Those screening tests were carried out under certain conditions using the equipment for minimum ignition temperature on cloud determination (0.5 g set at 500 °C and 0.5 bar), and minimum ignition energy determination (using 100 and 300 mJ energies and 900 and 1200 mg). From those test results, important differences were seen between manufacturers, but most important, differences between colours of the same manufacturer were observed. The screening tests allowed the selection of 11 samples that were fully characterized through thermogravimetric analysis, maximum pressure of explosion, Kst, minimum ignition temperature on cloud, and minimum ignition energy. When carrying out thermogravimetric analysis, some samples increased mass at temperatures close to 300 °C and unexpectedly absorbed energy, followed by the expected combustion reaction at higher temperatures. From the obtained results it was noticed that the colour powders that included talcum in its composition did not produce explosion. Flammability and explosion tests, again, showed important differences between manufacturers and colours, and so it was possible to determine the relative flash fire and explosion risks of the various tested powders.  相似文献   

9.
Hydrogen fluoride and ammonia are widely used in chemical industries. Both substances are hazardous and frequently a source of leakage accidents. Since a hydrogen fluoride release accident occurred in Gumi, S. Korea (2012), the Korea Occupational Safety and Health Agency (KOSHA) has emphasized that special attention and management are needed with respect to toxic substances. For post-release mitigation, a water curtain is known as one of the most effective and economical systems. In this study, a computational fluid dynamics (CFD) program was used to identify the effect of using a water curtain as a mitigation system for toxic substances that leak out from industrial facilities. Simulations were conducted to analyze how effectively a water curtain could mitigate the dispersion of toxic substances. To verify the simulation's accuracy, the INERIS Ammonia dispersion experiment and Goldfish experiment were simulated and compared. Various water curtains were applied to the simulated field experiment to confirm the mitigation factors with toxic substances. The results show that the simulations and experiments are consistent and that the dispersion of toxic substances can be mitigated by water curtains in certain circumstances.  相似文献   

10.
The process of delivering nanograde metal powders by a high-speed carrier gas is often subject to high explosion risks. This study adopted initial flow rates of 13.1, 8.5, 6.5, and 3.5 m/s for air transporting 30-nm titanium powder, 35-nm iron powder, and 35-nm aluminum powder to gauge the impact on a pipe bend in a 20-l-apparatus. The test results revealed that the 30-nm titanium powder caused an explosion at all initial flow rates; the 35-nm iron powder also caused an explosion, but dust explosion and sintering were eliminated when the flow rate was adjusted to less than 3.5 m/s; and the 35-nm aluminum powder exhibited no explosion or sintering at all flow rates. When pure nitrogen was used for transporting nanograde metal powders, no explosions occurred for all the three types of metal powders. The minimum ignition energy for these three types of nanograde metal powders was less than 1 mJ.  相似文献   

11.
溴氟丙烯/13X沸石复合粉体抑制汽油火的试验研究   总被引:2,自引:2,他引:0  
为提高粉体灭火介质的灭火性能,基于粉体灭火剂在火灾防治领域的重要性,通过减压吸附的方法,将洁净高效的气体灭火剂溴氟丙烯负载在13X沸石的孔洞之中,形成气-固复合粉体灭火剂。采用X-射线衍射仪、扫描电镜等对复合粉体的结构和组分进行表征。通过模拟试验研究溴氟丙烯含量不同的复合粉体对汽油油池火的灭火效果,并和普通的干粉灭火剂进行对比。结果证明,溴氟丙烯和13X沸石所形成的气-固复合粉体灭火剂针对汽油油池火具有很好的灭火性能,在同样的试验条件下,其灭火时间和灭火剂用量远少于普通的干粉灭火剂,且随着复合粉体中溴氟丙烯的含量增加,复合粉体的灭火性能逐渐提高。  相似文献   

12.
为发展洁净高效新型粉体灭火介质,以沸石粉体为基体,采用盐酸活化和氯化铁溶液浸泡方法制备载铁改性沸石粉体灭火剂。采用X-射线衍射仪(XRD)、扫描电镜(SEM)和X-射线荧光光谱仪(XRF)等仪器对该粉体灭火剂的结构和形貌进行表征。通过小尺度的杯式燃烧器试验研究载铁沸石粉体对甲烷/空气扩散火焰的灭火效果,并和未改性沸石粉体进行对比。试验结果表明,载铁改性沸石粉体灭火剂的灭火效能明显高于未改性沸石粉体。改性沸石灭火效能提高,主要是由于所负载的铁离子在火焰中转化为活性铁原子,参与清除火焰自由基的催化反应。  相似文献   

13.
Dust explosions continue to pose a serious threat to the process industries handling combustible powders. According to a review carried out by the Chemical Safety Board (CSB) in 2006, 281 dust explosions were reported between 1980 and 2005 in the USA, killing 119 workers and injuring 718. Metal dusts were involved in 20% of these incidents. Metal dust deflagrations have also been regularly reported in Europe, China and Japan.The term “metal dusts” encompasses a large family of materials with diverse ignitability and explosibility properties. Compared to organic fuels, metal dusts such as aluminum or magnesium exhibit higher flame temperature (Tf), maximum explosion pressure (Pmax), deflagration index (KSt), and flame speed (Sf), making mitigation more challenging. However, technological advances have increased the efficiency of active explosion protection systems drastically, so the mitigation of metal dust deflagrations has now become possible.This paper provides an overview of metal dust deflagration suppression tests. Recent experiments performed in a 4.4 m3 vessel have shown that aluminum dust deflagrations can be effectively suppressed at a large scale. It further demonstrates that metal dust deflagrations can be managed safely if the hazard is well understood.  相似文献   

14.
涂装作业场所使用的油漆和溶剂一般是易燃易挥发的液体,因而此类场所的火灾爆炸危险很大.一旦发生事故,将会造成巨大的财产和人员损失.本文针对此类场所火灾爆炸事故的特点,分析对比了各种消防系统对此类场所火灾爆炸事故的控制能力,提出了超细干粉灭火系统相对于其他消防系统对于控制此类场所火灾爆炸危险的优点,同时也对探测器的选型进行了讨论,并结合实例进行了超细干粉灭火设备在涂装作业场所的应用设计.  相似文献   

15.
利用自行设计的全程透明的火焰加速管和水喷雾系统,对不同水雾条件下的气体火焰传播现象进行了实验研究。运用光电传感器与数字摄像技术分析了不同浓度的甲烷在不同水雾条件下的火焰传播速度、火焰阵面轨迹以及火焰结构特性,并通过对传播火焰反应区温度的测量,探讨了水雾抑制气体爆炸火焰传播的内在机理及所需的条件。实验结果表明:由于水雾作用于火焰反应区,降低了火焰反应区内的温度和气体燃烧速度,延长火焰阵面的预热区,减缓火焰阵面传热与传质的进行,从而使传播火焰得以抑制。水雾对气体爆炸火焰传播的抑制效果与水雾流量速度、雾区浓度以及火焰到达水雾区的火焰传播速度有关。  相似文献   

16.
尾矿坝在运行过程中,堆积尾矿处于干湿交替环境,进行稳定性分析需要确定其抗剪强度和渗透系数。直接测量上述参数存在价格昂贵、耗时等缺点,而土水特征曲线是研究土的非饱和特性的重要工具。针对典型的尾矿材料,分别进行不同干密度尾矿样的脱水试验,测量不同吸力下尾矿样的含水量。在此基础上,整理得到不同干密度下尾矿样的土水特征曲线,采用Gardner模型对其进行拟合,得到考虑干密度影响的尾矿材料土水特征曲线模型。最后,将其应用于尾矿边坡的稳定性分析中,探求基质吸力对边坡稳定性的影响。研究成果可为尾矿材料的力学特性以及非饱和尾矿坝稳定性分析提供理论基础。  相似文献   

17.
为了减少湿式除尘系统发生氢气爆炸事故的可能性,提出通过抑制湿式除尘系统中铝粉与水反应的方法来从本质上加以控制。选取木质素磺酸钙为抑制剂,利用研发的金属粉与水反应产生氢气测试仪进行氢气抑制实验,得出不同浓度木质素磺酸钙溶液随时间变化的抑氢曲线,表明木质素磺酸钙能较好地抑制铝粉和水反应产生氢气。使用扫描电子显微镜(Scanning Electron Microscope,SEM)和傅里叶变换红外光谱法(Fourier Transform Infrared,FTIR)对铝粉与木质素磺酸钙溶液反应后的产物进行表征,研究木质素磺酸钙的抑制机理。研究结果表明:可以将木质素磺酸钙应用到铝制品抛光打磨场所的湿式除尘系统中,从而降低氢气爆炸事故发生的可能性。  相似文献   

18.
Curtain mitigation systems are modeled here since they have experimentally shown their efficiency in reducing the concentration of certain toxic gases within dense gas clouds. Air, water and steam are analyzed in a model as the physical barriers to decrease the gas concentration. The model, developed for a steady-state mitigation process, is based on the mass, energy and momentum conservation laws. Concentration estimations during the dispersion before and after the mitigation are performed with a SLAB type model. A sensitivity analysis for each model is given to detect which variables have bigger effects. A release of chlorine is used as an example and the results are calculated in a prototype developed in Visual C++, where the model is solved using the Runge–Kutta 4th order method. The results include the effects of composition, speed, temperature and height of the releasing point as well as a comparison with CFD simulations. The proposed model is simplified and it cannot reproduce eddy effects but it is fast and robust enough. The model provides a set of equations that can be used in numerical problems where explicit derivatives are required, e.g. optimizations procedures.  相似文献   

19.
In order to prevent dust explosions due to electrostatic discharges (ESD), this paper reports the minimum ignition energy (MIE) of aluminum powders in the air and the effective nitrogen (N2) concentration for the inert technique. The Hartman vertical-tube apparatus and five kinds of different sized pure aluminum powders (median particle size, D50; 8.53 μm–51.2 μm) were used in this study. The statistic minimum ignition energy (MIEs) of the most sensitive aluminum powder used in this study was 5 mJ, which was affected by the powder particle size (D50; 8.53 μm). In the case of aluminum powder, the inerting effects of N2 were quite different from the polymer powders. The MIE of aluminum powder barely changed until the N2 concentration was 89% in comparison with that of the normal air. When the N2 concentration was 90%, the MIE of aluminum powders suddenly exceeded 1000 mJ, which does not occur easily with ESD in the industrial process.  相似文献   

20.
This work aims to help improve the electrostatic safety design and explosion prevention of medical facilities. In this study, the minimum ignition energies (MIEs) of Florfenicol, Tilmicosin and mixtures of Florfenicol and Tilmicosin at ratios of 1:1, 1:2, 2:1 and 1:4 were measured in a Hartmann apparatus. The results demonstrated that the MIEs for Florfenicol, Tilmicosin and mixtures of Florfenicol and Tilmicosin at ratios of 1:1, 1:2, 2:1 and 1:4 are 200, 70, 180, 150, 200 and 110 mJ, respectively. Tilmicosin is more sensitive to static electricity, which is more dangerous than the other two powders examined in this paper. Furthermore, the MIEs of the mixtures are proportional to the Florfenicol content. For all powders, the MIE first decreased with the powder mass and later reached its minimum value. In addition, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) were used to investigate the morphological specificity and thermal decomposition of the powders to elucidate the parameters governing the powder explosions further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号