首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Simonis JL 《Ecology》2012,93(7):1517-1524
Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.  相似文献   

2.
Dispersal is the key process enhancing the long-term persistence of metapopulations in heterogeneous and dynamic landscapes. However, any individual emigrating from a occupied patch also increases the risk of local population extinction. The consequences of this increase for metapopulation persistence likely depend on the control of emigration. In this paper, we present results of individual-based simulations to compare the consequences of density-independent (DIE) and density-dependent (DDE) emigration on the extinction risk of local populations and a two-patch metapopulation. (1) For completely isolated patches extinction risk increases linearly with realised emigration rates in the DIE scenario. (2) For the DDE scenario extinction risk is nearly insensitive to emigration as longs as emigration probabilities remain below ≈0.2. Survival chances are up to half an order of magnitude larger than for populations with DIE. (3) For low dispersal mortality both modes of emigration increase survival of a metapopulation by ca. one order of magnitude. (4) For high dispersal mortality only DDE can improve the global survival chances of the metapopulation. (5) With DDE individuals are only removed from a population at high population density and the risk of extinction due to demographic stochasticity is thus much smaller compared to the DIE scenario.With density-dependent emigration prospects of metapopulations survival may thus be much higher compared to a system with density-independent emigration. Consequently, the knowledge about the factors driving emigration may significantly affect our conclusions concerning the conservation status of species.  相似文献   

3.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

4.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

5.
Yaari G  Ben-Zion Y  Shnerb NM  Vasseur DA 《Ecology》2012,93(5):1214-1227
Recent theory and experimental work in metapopulations and metacommunities demonstrates that long-term persistence is maximized when the rate at which individuals disperse among patches within the system is intermediate; if too low, local extinctions are more frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison across the region. Although common, little is known about how the size and topology of the metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate and regional persistence time. Using a suite of mathematical models, we examined the effects of dispersal, patch number, and topology on the regional persistence time when local populations are subject to demographic stochasticity. We found that the form of the relationship between regional persistence time and the number of patches is consistent across all models studied; however, the form of the relationship is distinctly different among low, intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional persistence times increase logarithmically and exponentially (respectively) with increasing numbers of patches, whereas under high dispersal, the form of the relationship depends on local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give rise to the bell-shaped relationship between dispersal rate and persistence time, are a product of recolonization and the region-wide synchronization (or lack thereof) of population dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost importance for managing and conserving the earth's evermore fragmented populations.  相似文献   

6.
Johansson V  Ranius T  Snäll T 《Ecology》2012,93(2):235-241
The colonization-extinction dynamics of many species are affected by the dynamics of their patches. For increasing our understanding of the metapopulation dynamics of sessile species confined to dynamic patches, we fitted a Bayesian incidence function model extended for dynamic landscapes to snapshot data on five epiphytic lichens among 2083 mapped oaks (dynamic patches). We estimate the age at which trees become suitable patches for different species, which defines their niche breadth (number of suitable trees). We show that the colonization rates were generally low, but increased with increasing connectivity in accordance with metapopulation theory. The rates were related to species traits, and we show, for the first time, that they are higher for species with wide niches and small dispersal propagules than for species with narrow niches or large propagules. We also show frequent long-distance dispersal in epiphytes by quantifying the relative importance of local dispersal and background deposition of dispersal propagules. Local stochastic extinctions from intact trees were negligible in all study species, and thus, the extinction rate is set by the rate of patch destruction (tree fall). These findings mean that epiphyte metapopulations may have slow colonization-extinction dynamics that are explained by connectivity, species traits, and patch dynamics.  相似文献   

7.
Loayza AP  Knight T 《Ecology》2010,91(9):2684-2695
We examined the effect of seed dispersal by Purplish Jays (Cyanocorax cyanomelas; pulp consumers) and the Chestnut-eared Ara?ari (Pteroglossus castanotis; "legitimate" seed dispersers) on population growth of the small tree Guettarda viburnoides (Rubiaceae) in northeastern Bolivian savannas. Because each bird species differs with respect to feeding and post-feeding behavior, we hypothesized that seed dispersal by each species will contribute differently to the rate of increase of G. viburnoides, but that seed dispersal by either species will increase population growth when compared to a scenario with no seed dispersal. To examine the effects of individual dispersers on the future population size of G. viburnoides, we projected population growth rate using demographic models for G. viburnoides that explicitly incorporate data on quantitative and qualitative aspects of seed dispersal by each frugivore species. Our model suggests that seed dispersal by C. cyanomelas leads to positive population growth of G. viburnoides, whereas seed dispersal by P. castanotis has a detrimental effect on the population growth of this species. To our knowledge, this is the first study to report negative effects of a "legitimate" seed disperser on the population dynamics of the plant it consumes. Our results stress the importance of incorporating frugivore effects into population projection matrices, to allow a comprehensive analysis of the effectiveness of different dispersers for plant population dynamics.  相似文献   

8.
The Mediterranean Sea hosts 5.6% of the world benthic invertebrate species on 0.82% of the ocean surface. Mediterranean ecosystems are also characterized by low densities (and biomasses) compared to other oceanic ecosystems, a feature often attributed to their oligotrophic environment. Oligotrophic conditions can induce lower growth rates and higher mortality rates, and a stronger competition for food between individuals. A theoretical model was developed in order to study the diversity vs. density patterns in coastal benthic invertebrate species. This model describes their minimal population dynamics including basic processes (growth, mortality, reproduction and effects of competitive interactions between individuals) and incorporating fluxes of larvae (finally recruited as juveniles) between a mosaic of local habitats. Populations are therefore structured in a metacommunity. The connectivity between local communities is ensured by passive pelagic larval dispersal. In the Mediterranean Sea, because of the microtidal regime, the connectivity between coastal habitats is lower and more variable than in macrotidal basins. Mathematical properties of the model revealed that competitive interactions (intra- and interspecific competitions) have a stabilizing effect on interacting organisms when gains by recruitment are higher than losses by mortality. In addition, low mortality rates and low connectivity which decreases negative local interactions maintains high regional species diversity with low local densities. This property suggested that oligotrophy cannot be the only factor leading to the high diversity–low density pattern observed in the Mediterranean Sea.  相似文献   

9.
Extra-pair paternity (EPP) is a common feature of the mating systems of many birds. The rate of EPP may vary between species, races and populations. A comparison of extra-group paternity (EGP) rates was made between two races of a group-living passerine, the Australian magpie (Gymnorhina tibicen), to determine if similar mating systems were being employed. The two populations had similar social structure, but differed in group size and dispersal. It was predicted that dispersal differences would have a profound effect on the rate of EGP between the populations, as the population with the lower rate of dispersal and higher chance of breeding with a close relative would engage in EGPs more frequently. Eight microsatellite loci were used to determine parentage in the white-backed Australian magpie (G. t. tyrannica). The rate of EGP was found to be 44%. Dispersal rates were estimated from observational data. Over half of the juvenile magpie cohort from the previous breeding season left the territorial group. These results contrast sharply with the results found by other researchers in a population of western Australian magpies (G. t. dorsalis). In this population, 82% EGP is recorded and dispersal of juveniles is close to nil. The results indicate that dispersal rate is a potentially important predictor of rates of extra-group fertilisations between populations of this species, and suggest that females maximise their reproductive output by avoiding breeding with close kin.Communicated by M. Soler  相似文献   

10.
Dispersal among ecological communities is usually assumed to be random in direction, or to vary in distance or frequency among species. However, a variety of natural systems and types of organisms may experience dispersal that is biased by directional currents or by gravity on hillslopes. We developed a general model for competing species in metacommunities to evaluate the role of directionally biased dispersal on species diversity, abundance, and traits. In parallel, we tested the role of directionally biased dispersal on communities in a microcosm experiment with protists and rotifers. Both the model and experiment independently demonstrated that diversity in local communities was reduced by directionally biased dispersal, especially dispersal that was biased away from disturbed patches. Abundance of species (and composition) in local communities was a product of disturbance intensity but not dispersal directionality. High disturbance selected for species with high intrinsic growth rates and low competitive abilities. Overall, our conclusions about the key role of dispersal directionality in (meta)communities seem robust and general, since they were supported both by the model, which was set in a general framework and not parameterized to fit to a specific system, and by a specific experimental test with microcosms.  相似文献   

11.
Dispersal in Spatially Explicit Population Models   总被引:4,自引:0,他引:4  
Abstract: Ruckelshaus et al. (1997) outlined a simulation model of dispersal between patches in a fragmented landscape. They showed that dispersal success—the proportion of dispersers successfully locating a patch—was particularly sensitive to errors in dispersal mortality and concluded that this limits the utility of spatially explicit population models in conservation biology. I contend that, although they explored error propagation in a simple dispersal model, they did not explore how errors are propagated in spatially explicit population models, as no consideration of population processes was included. I developed a simple simulation model to investigate the effect of varying dispersal success on predictions of patch occupancy and population viability, the conventional outputs of spatially explicit population models. The model simulates births and deaths within habitat patches and dispersal as the transfer of individuals between them. Model predictions were sensitive to changes in dispersal success across a restricted range of within-patch growth rates, which depended on the dispersal initiation mechanism, patch carrying capacities, and number of generations simulated. Predictions of persistence and patch occupancy were generally more sensitive to changes in dispersal success (1) under presaturation rather than saturation dispersal; (2) at lower patch carrying capacities; and (3) over longer time periods. The framework I present provides a means of assessing, quantitatively, the regions of parameter space for which differences in dispersal success are likely to have a large effect on population model outputs. Investigating the effect of the representation of dispersal behavior within the demographic and landscape context provides a more useful assessment of whether our lack of knowledge is likely to cause unacceptable uncertainty in the predictions of spatially explicit population models.  相似文献   

12.
Connolly SR  Baird AH 《Ecology》2010,91(12):3572-3583
Dispersal influences ecological dynamics, evolution, biogeography, and biodiversity conservation, but models of larval dispersal in marine organisms make simplifying assumptions that are likely to approximate poorly the temporal dynamics of larval survival and capacity for settlement. In particular, larval mortality rates are typically assumed to be constant throughout larval life; and all larvae are frequently assumed to acquire and lose competence at the same time. To improve upon these assumptions, we here develop simple models of dispersal potential that incorporate rates of mortality, and acquisition and loss of settlement competence. We fit these models to empirical competence and survival data for five scleractinian coral species, to test the models' ability to characterize empirical survival and competence patterns, and to estimate the dispersal potential implied by those patterns. The models fit the data well, incorporating qualitative features of competence and survival that traditional approaches to modeling dispersal do not, with important implications for dispersal potential. Most notably, there was high within-cohort variation in the duration of the competent period in all species, and this variation increases both self-recruitment and long-distance dispersal compared with models assuming a fixed competent period. These findings help to explain the seeming paradox of high genetic population structure, coupled with large geographic range size, observed in many coral species. More broadly, our approach offers a way to parsimoniously account for variation in competence dynamics in dispersal models, a phenomenon that our results suggest has important effects on patterns of connectivity in marine metapopulations.  相似文献   

13.
Oro D 《Ecology》2008,89(3):838-846
Merging patterns and processes about the way individuals should be distributed in a habitat is a key issue in the framework of spatial ecology. Here the despotic distribution of individuals in two distinct and neighboring patches within a local population of a long-lived colonial bird, the Yellow-legged Gull (Larus michahellis), was assessed. There was no density dependence for suitable habitat at the study population, but behavioral data suggested that birds from the good patch precluded birds from the bad patch from breeding in their patch. Younger breeders were almost exclusively found in the bad patch, where individuals were probably attracted by conspecific attraction from the good patch. Most breeding parameters were lower in the bad patch, resulting mainly from a higher vulnerability to environmental perturbations and a higher rate of intraspecific nest predation. Attempts at breeding dispersal between the two patches were only observed from the bad to the good patch. Strikingly, adult survival and large-scale dispersal, two life history parameters that are very conservative in long-lived organisms, were also more affected at the bad patch when catastrophic predation occurred. The study was consistent with an ideal despotic distribution at small spatial scale, and suggests that individual behavior can influence local population dynamics.  相似文献   

14.
Lesser MR  Jackson ST 《Ecology》2012,93(5):1071-1081
The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.  相似文献   

15.
The genetic structure of benthic marine invertebrates is often described as “chaotic” when genetic structure cannot be explained and barriers to dispersal and gene flow cannot be identified. Here, chaotic patterns of genetic structure for the polychaete Pygospio elegans (Claparède) sampled at 16 locations from the heterogeneous Isefjord–Roskilde Fjord estuary complex in Denmark were found. There was no isolation by distance, and the geography of the estuary complex did not seem to pose a barrier to dispersal and gene flow in this species. We investigated whether characteristics of the environment could be related to the genetic structure and possibly restrict gene flow in this species. Additionally, since P. elegans is poecilogonous, producing larvae with different pelagic developmental periods, we investigated whether observed developmental modes in the samples might clarify the genetic patterns. None of the tested factors explained the population genetic structure. However, a high degree of relatedness among individuals in almost all samples was found. Samples with a larger percentage of young individuals had more related individuals, suggesting that different cohorts could be comprised of individuals with different degrees of relatedness. Relatedness within a site could be increased by limited larval dispersal, collective dispersal of related larvae, sweepstakes reproductive success, or asexual reproduction, but distinguishing between these requires further study. Using a “seascape genetics” approach allowed us to investigate some of the numerous potential factors that could influence population genetic structure in a poecilogonous species.  相似文献   

16.
Abstract: The tidewater goby ( Eucyclogobius newberryi ), an endangered species in the United States, occurs in a series of isolated coastal wetlands in California. Using historical presence-absence data and our own surveys, we estimated annual rates of extirpation and recolonization for several populations of the goby in southern California. As predicted, large wetlands had lower rates of extirpation than small wetlands. There was a negative but statistically nonsignificant correlation between recolonization rate and distance to the nearest northerly source population. Populations at small sites were sensitive to drought, presumably because droughts can eliminate suitable habitat at small wetlands. Populations in small wetlands have declined over time, even after accounting for variation in stream flow, supporting the species' endangered status. Our study emphasizes the need to understand metapopulation dynamics for conserving species where the unit of conservation is a local population. It is also emphasizes the importance of not treating metapopulations as identical units. Finally, our results provide a means for describing the decline of a species that is complex in time and space and provide insight into how to target protection measures among metapopulations.  相似文献   

17.
Density-dependent emigration has been recognized as a fitness enhancing strategy. Yet, especially in the modelling literature there is no consensus about how density-dependent emigration should quantitatively be incorporated into metapopulation models. In this paper we compare the performance of five different dispersal strategies (defined by the functional link between density and emigration probability). Four of these strategies are based on published functional relationships between local population density and emigration probability, one assumes density-independent dispersal. We use individual-based simulations of time-discrete metapopulation dynamics and conduct evolution experiments for a broad range of values for dispersal mortality and environmental stochasticity. For each set of these conditions we analyze the evolution of emigration rates in ‘monoculture experiments’ (with only one type of dispersal strategy used by all individuals in the metapopulation) as well as in selection experiments that allow a pair-wise comparison of the performance of each functional type. We find that a single-parameter ‘asymptotic threshold’ strategy - derived from the marginal value theorem - with a decelerating increase of emigration rate with increasing population density, out-competes any other strategy, i.e. density-independent emigration, a ‘linear threshold’ strategy and a flexible three-parameter strategy. Only when environmental conditions select for extremely high emigration probabilities (close to one), strategies may perform approximately equally. A simple threshold strategy derived for the case of continuous population growth performs even worse than the density-independent strategy. As the functional type of the dispersal function implemented in metapopulation models may severely affect predictions concerning the survival of populations, range expansion, or community changes we clearly recommend to carefully select adequate functions to model density-dependent dispersal.  相似文献   

18.
Abstract: Pheromone‐based monitoring is a promising new method for assessing the conservation status of many threatened insect species. We examined the versatility and usefulness of pheromone‐based monitoring by integrating a pheromone–kairomone trapping system and pitfall trapping system in the monitoring of two saproxylic beetles, the hermit beetle Osmoderma eremita (Coleoptera: Scarabaeidae) and its predator Elater ferrugineus (Coleoptera: Elateridae), which live inside hollow trees. We performed mark–recapture studies of both species with unbaited pitfall traps in oak hollows combined with pheromone‐baited funnel traps suspended from oak branches to intercept dispersing individuals. For O. eremita, the integrated trapping system showed that the population in the study sites may be considerably higher than estimates based on extrapolation from pitfall trapping alone (approximately 3400 vs. 1100 or 1800 individuals, respectively). Recaptures between odor‐baited funnel traps showed that males and females had similar dispersal rates, but estimating the number of dispersing individuals was problematic due to declining recapture probability between subsequent capture events. Our conservative estimate, assuming a linear decrease in capture probability, suggested that around 1900 individuals, or at least half of the O. eremita population, may perform flights from their natal host trees, representing higher dispersal rates than previous estimates. E. ferrugineus was rarely caught in pitfall traps. One hundred thirty‐nine individuals, likely almost exclusively females, were caught in odor‐baited funnel traps with approximately 4% recapture probability. If recapture probability over consecutive capture events follows that of O. eremita, this would correspond to a total population size of 2500–3000 individuals of the predator; similar to its supposed prey O. eremita. Our results demonstrate that pheromone‐based monitoring is a valuable tool in the study of species or life‐history stages that would otherwise be inaccessible.  相似文献   

19.
Over the last decades, agricultural intensification has caused a dramatic reduction of grassy habitats. This habitat loss has had a strong negative effect on many meadow-living insect populations, including butterflies. As a part of the cross-compliance measures of the Common Agricultural Policy of the European Union, subsidies for creation and maintenance of grassy field margins (GFM) have been launched. Among other environmental issues, they may serve as corridors for movement of various meadow-living species between individual meadows. Their role as corridors has, however, not yet been demonstrated at the landscape scale and their characteristics that most significantly increase landscape connectivity are unknown. Empirical data for such studies are missing, as the GFM subsidies were launched only 3 years ago. One possibility to get some predictions of their outcomes is provided by simulation models. Here we present our simulation results, using an extension of the model developed by Kindlmann et al. (2004) for the Meadow Brown butterfly, Maniola jurtina. The extension includes the probability to cross a boundary (Conradt and Roper, 2006) that negatively influences dispersal rates but increases sensitivity to the corridor effect. Our simulations show that GFMs increase the dispersal rates between habitat patches and we predict the optimal combinations of width and number of GFMs in the landscape. This way we provide a decision-making tool for increasing landscape connectivity for M. jurtina and similar species. Although our simulations are based on a particular species, they may be generalized because this species shows dispersal rates that are typical of butterfly metapopulations (Conradt et al., 2000), and a potentially widespread dispersal kernel (i.e. “foray search”) that has been reported in a wide variety of species (see Conradt et al., 2003 for a review).  相似文献   

20.
Gene flow between populations of the asteroid Linckia laevigata (Linnaeus) was investigated by examining over 1000 individuals collected from ten reefs throughout the Great Barrier Reef (GBR), Australia, for genetic variation at seven polymorphic enzyme loci. Despite geographic separations in excess of 1000 km, Nei's unbiased genetic distance (0 to 0.003) and standardised genetic variation between populations (F ST) values (mean 0.0011) were small and not significant. Genetic homogeneity among L. laevigata populations is consistent with the long-distance dispersal capability of its 28 d planktonic larval phase, and is greater than that observed for other asteroid species, including another high-dispersal species, Acanthaster planci, which has a 14 d larval phase. Variation within populations was also higher than previously recorded for asteroids (mean heterozygosity=0.384; number of alleles per locus ranged from 5.1 to 6.0 in each population). Among asteroids, dispersal ability is positively correlated with gene flow and levels of variation, and negatively correlated with levels of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号