首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Wicked Problem of China's Disappearing Coral Reefs   总被引:1,自引:0,他引:1  
We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10–15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef‐management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. El Problema Malvado de la Desaparición de los Arrecifes de Coral en China  相似文献   

2.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

3.
Species that are strong interactors play disproportionately important roles in the dynamics of natural ecosystems. It has been proposed that their presence is necessary for positively shaping the structure and functioning of ecosystems. We evaluated this hypothesis using the case of the world's largest parrotfish (Bolbometopon muricatum), a globally imperiled species. We used direct observation, animal tracking, and computer simulations to examine the diverse routes through which B. muricatum affects the diversity, dispersal, relative abundance, and survival of the corals that comprise the foundation of reef ecosystems. Our results suggest that this species can influence reef building corals in both positive and negative ways. Field observation and simulation outputs indicated that B. muricatum reduced the abundance of macroalgae that can outcompete corals, but they also feed directly on corals, decreasing coral abundance, diversity, and colony size. B. muricatum appeared to facilitate coral advancement by mechanically dispersing coral fragments and opening up bare space for coral settlement, but they also damaged adult corals and remobilized a large volume of potentially stressful carbonate sediment. The impacts this species has on reefs appears to be regulated in part by its abundance—the effects of B. muricatum were more intense in simulation scenarios populated with high densities of these fish. Observations conducted in regions with high and low predator (e.g., sharks) abundance generated results that are consistent with the hypothesis that these predators of B. muricatum may play a role in governing their abundance; thus, predation may modulate the intensity of the effects they have on reef dynamics. Overall our results illustrate that functionally unique and threatened species may not have universally positive impacts on ecosystems and that it may be necessary for environmental managers to consider the diverse effects of such species and the forces that mediate the strength of their influence. Efectos Positivos y Negativos de un Pez Loro Amenazado Sobre Ecosistemas Arrecifales  相似文献   

4.
Abstract:  Priorities for conservation, management, and associated activities will differ based on the interplay between nearness of ecosystems to full recovery from a disturbance (pristineness), susceptibility to climate change (environmental susceptibility [ES]), and capacity of human communities to cope with and adapt to change (social adaptive capacity [AC]). We studied 24 human communities and adjacent coral reef ecosystems in 5 countries of the southwestern Indian Ocean. We used ecological measures of abundance and diversity of fishes and corals, estimated reef pristineness, and conducted socioeconomic household surveys to determine the AC of communities adjacent to selected coral reefs. We also used Web-based oceanographic and coral mortality data to predict each site's ES to climate warming. Coral reefs of Mauritius and eastern Madagascar had low ES and consequently were not predicted to be affected strongly by warm water, although these sites were differentiated by the AC of the human community. The higher AC in Mauritius may increase the chances for successful self-initiated recovery and protective management of reefs of this island. In contrast, Madagascar may require donor support to build AC as a prerequisite to preservation efforts. The Seychelles and Kenya had high ES, but their levels of AC and disturbance differed. The high AC in the Seychelles could be used to develop alternatives to dependence on coral reef resources and reduce the effects of climate change. Pristineness weighted toward measures of fish recovery was greatest for Kenya's marine protected areas; however, most protected areas in the region were far from pristine. Conservation priorities and actions with realistic chances for success require knowledge of where socioecological systems lie among the 3 axes of environment, ecology, and society.  相似文献   

5.
Continuing coral‐reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral‐reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern‐day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.  相似文献   

6.
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.  相似文献   

7.
Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (<10%) than published estimates from surveys along small transects (<0.02 ha), which is not consistent with inverted biomass pyramids (predator biomass greater than prey biomass) reported by other researchers for pristine reefs. We examined the relation between the density of reef sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas.  相似文献   

8.
Marine protected areas (MPAs) are a commonly applied solution to coral reef degradation, yet coral reefs continue to decline worldwide. We argue that expanding the range of MPAs to include degraded reefs (DR‐MPA) could help reverse this trend. This approach requires new ecological criteria for MPA design, siting, and management. Rather than focusing solely on preserving healthy reefs, our approach focuses on the potential for biodiversity recovery and renewal of ecosystem services. The new criteria would help identify sites with the highest potential for recovery and the greatest resistance to future threats (e.g., increased temperature and acidification) and sites that contribute to MPA connectivity. The DR‐MPA approach is a compliment rather than a substitute for traditional MPA design approaches. We believe that the DR‐MPA approach can enhance the natural, or restoration‐assisted, recovery of DRs and their ecosystem services; increase total reef area available for protection; promote more resilient and better‐connected MPA networks; and improve conditions for human communities dependent on MPA ecosystem services.  相似文献   

9.
Effects of Artisanal Fishing on Caribbean Coral Reefs   总被引:6,自引:0,他引:6  
Abstract:  Although the impacts of industrial fishing are widely recognized, marine ecosystems are generally considered less threatened by artisanal fisheries. To determine how coral reef fish assemblages and benthic communities are affected by artisanal fishing, we studied six Caribbean islands on which fishing pressure ranged from virtually none in Bonaire, increasing through Saba, Puerto Rico, St Lucia, and Dominica, and reaching very high intensities in Jamaica. Using stationary-point fish counts at 5 m and 15 m depth, we counted and estimated the lengths of all noncryptic, diurnal fish species within replicate 10-m-diameter areas. We estimated percent cover of coral and algae and determined reef structural complexity. From fish numbers and lengths we calculated mean fish biomass per count for the five most commercially important families. Groupers (Serranidae), snappers (Lutjanidae), parrotfish (Scaridae), and surgeonfish (Acanthuridae) showed order-of-magnitude differences in biomass among islands. Biomass fell as fishing pressure increased. Only grunts (Haemulidae) did not follow this pattern. Within families, larger-bodied species decreased as fishing intensified. Coral cover and structural complexity were highest on little-fished islands and lowest on those most fished. By contrast, algal cover was an order of magnitude higher in Jamaica than in Bonaire. These results suggest that following the Caribbean-wide mass mortality of herbivorous sea urchins in 1983–1984 and consequent declines in grazing pressure on reefs, herbivorous fishes have not controlled algae overgrowing corals in heavily fished areas but have restricted growth in lightly fished areas. In summary, differences among islands in the structure of fish and benthic assemblages suggest that intensive artisanal fishing has transformed Caribbean reefs.  相似文献   

10.
Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.  相似文献   

11.
Extreme tidal events are one of the most predictable natural disturbances in marine benthic habitats and are important determinants of zonation patterns in intertidal benthic communities. On coral reefs, spring low tides are recurrent disturbances, but are rarely reported to cause mass mortality. However, in years when extremely low tides coincide with high noon irradiances, they have the potential to cause widespread damage. Here, we report on such an event on a fringing coral reef in the central Great Barrier Reef (Australia) in September 2005. Visual surveys of colony mortality and bleaching status of more than 13,000 corals at 14 reef sites indicated that most coral taxa at wave-protected sites were severely affected by the event. Between 40 and 75% of colonies in the major coral taxa (Acropora, Porites, Faviidae, Mussidae and Pocilloporidae) were either bleached or suffered partial mortality. In contrast, corals at wave-exposed sites were largely unaffected (<1% of the corals were bleached), as periodic washing by waves prevented desiccation. Surveys along a 1–9 m depth gradient indicated that high coral mortality was confined to the tidal zone. However, 20–30% of faviid colonies were bleached throughout the depth range, suggesting that the increase in benthic irradiances during extreme low tides caused light stress in deeper water. Analyses of an 8-year dataset of tidal records for the area indicated that the combination of extended periods of aerial exposure and high irradiances occurs during May–September in most years, but that the event in September 2005 was the most severe. We argue that extreme low-tide, high-irradiance events are important structuring forces of intertidal coral reef communities, and can be as damaging as thermal stress events. Importantly, they occur at a time of year when risks from thermal stress, cyclones and monsoon-associated river run-off are minimal.  相似文献   

12.
化学污染物是影响珊瑚礁生态系统健康的重要因素之一。近年来,中国沿海地区农业活动、城市工业化以及旅游业发展迅速,珊瑚礁区的环境污染问题日趋严重。珊瑚礁生态系统长期处于化学污染物的联合毒性作用下,生态风险日益增加,已受到国内外研究者的广泛关注。本文综述了该领域的重要研究进展,并从个体、细胞和分子水平重点介绍了化学污染物对珊瑚的影响,主要包括:(1)珊瑚礁对重金属和多环芳烃有明显的富集作用,可以作为该海域化学污染物污染水平的外在反映;(2)化学污染物对珊瑚幼体的影响程度比成体大;(3)抗氧化酶和特定的功能基因可被用作生物标记物(biomarker)来监测珊瑚礁生态系统的健康状况。最后,本文对我国珊瑚礁生态系统未来的研究方向进行了展望,建议在典型的珊瑚礁海域进行长期的生态学监测,并结合室内毒理学实验,筛选出敏感的生物标志物,评价珊瑚礁生态系统可能存在的生态风险,为今后珊瑚礁生态系统的保护和管理提供科学依据。  相似文献   

13.
Coral reefs are highly dynamic and productive marine ecosystems, providing habitat and refuge for an enormous number of species including fish, invertebrates and algae. With increased anthropogenic pressures and global climate change, many coral reefs are rapidly declining. Currently, there is limited knowledge on condition and community assemblage composition of shallow fringing coral reefs along the south-eastern coast of Queensland, Australia. With increased demand to determine existence of coastal fringing reefs by National Regional Management groups, a rapid cost effective method to determine reef composition and condition was required. The aim of this study was to determine the benthic structure and extent of two small coastal fringing reefs (Hummock Hill Reef and Stringers Reef) along the Southern Great Barrier Reef. Reef substrate assessments were carried out using a rapid assessment technique and a Point Intercept Method (PIM). The data were analysed and classified using a Geographic Information System (GIS). Percent substrate cover was calculated using a visual basic image analysis program. The Point intercept method showed higher accuracy over the rapid assessment technique (up to 15–40% difference) and was thus deemed a more suitable classification tool for reefs with high structural complexity and heterogeneity. This study focused on piloting a rapid, cost effective Point Intercept Technique using random point count methodology to document coral benthic habitat and extent over a commonly used rapid assessment method as a tool for reef coastal management and conservation. The two techniques were compared and substrate classification success, limitations and errors were discussed.  相似文献   

14.
A strong earthquake in the western Caribbean in 2009 had a catastrophic impact on uncemented, unconsolidated coral reefs in the central sector of the shelf lagoon of the Belizean barrier reef. In a set of 21 reef sites that had been observed prior to the earthquake, the benthic assemblages of 10 were eradicated, and one was partially damaged, by avalanching of their slopes. Ecological dynamics that had played out over the previous 23 years, including the mass mortalities of two sequentially dominant coral species and a large increase in the cover of an encrusting sponge, were instantaneously rendered moot in the areas of catastrophic reef-slope failure. Because these prior dynamics also determined the benthic composition and resilience of adjacent sections of reef that remained intact, the history of disturbance prior to the earthquake will strongly influence decadal-scale recovery in the failed areas. Geological analysis of the reef framework yielded a minimum return time of 2000-4000 years for this type of high-amplitude event. Anthropogenic degradation of ecosystems must be viewed against the backdrop of long-period, natural catastrophes, such as the impact of strong earthquakes on uncemented, lagoonal reefs.  相似文献   

15.
Field-based cultivation of Kappaphycus and Eucheuma seaweeds is widespread across the tropics and is largely done to extract the polysaccharide carrageenan, which is used in commercial applications. Although such seaweed farming has been cited as a sustainable alternative livelihood to destructive fishing, there has not been a comprehensive review of its environmental impacts to assess its potential conservation benefit. We reviewed the peer-reviewed and industry gray literature to determine what is known about seaweed farming techniques and their impacts on local ecosystems, organisms, and ecosystem services. We identified 43 tropical or subtropical countries that are currently cultivating or have cultivated carrageenophytes. Ecosystem impacts of seaweed farming were measured directly in 33 publications with variable results. Placement of seaweed farms above seagrass beds led to reduced productivity and shoot density in 5 studies and reduced or altered meiofaunal abundance and diversity in 6 studies. On coral reefs, overgrowth of corals by farmed seaweed species was documented in 8 cases. Two studies showed changes to herbivorous fish communities in adjacent areas because seaweed farms changed the environment, whereas in 2 studies measures of overall abundance or diversity did not change. The impacts of seaweed farming may not be as destructive as some other human activities, but they should still be considered when establishing new farms or managing existing farm sites. Our findings are consistent with suggestions to mitigate impact on local ecosystems by shifting seaweed farms to deeper, sandy-bottom areas. However, some of these changes may adversely affect farmers and associated communities.  相似文献   

16.
The effects of sedimentation on coral reefs are commonly studied at local scales, but larger-scale patterns have been elusive, making it difficult to determine the role of sedimentation in region-wide changes in these ecosystems. We examined the relationships between characteristics of reef-associated surface sediment and benthic composition of 22 reefs around 11 islands of the eastern Caribbean. The terrigenous fraction in surface sediment increased with proximity to a clear source of sediment input. The percent cover of live coral, macroalgae, and turf algae decreased with higher terrigenous sediment fraction, while sponge cover increased. Sites with sediment containing high and low terrigenous fraction differed in coral species assemblages. In particular, the cover of Montastraea annularis complex decreased with increasing terrigenous sediment fraction. The proportion of fine-grained sediment had no effect on benthic composition. These results suggest that sedimentation may play a role in shaping coral reef communities at a regional scale.  相似文献   

17.
Coral reefs are threatened ecosystems, so it is important to have predictive models of their dynamics. Most current models of coral reefs fall into two categories. The first is simple heuristic models which provide an abstract understanding of the possible behaviour of reefs in general, but do not describe real reefs. The second is complex simulations whose parameters are obtained from a range of sources such as literature estimates. We cannot estimate the parameters of these models from a single data set, and we have little idea of the uncertainty in their predictions.We have developed a compromise between these two extremes, which is complex enough to describe real reef data, but simple enough that we can estimate parameters for a specific reef from a time series. In previous work, we fitted this model to a long-term data set from Heron Island, Australia, using maximum likelihood methods. To evaluate predictions from this model, we need estimates of the uncertainty in our parameters. Here, we obtain such estimates using Bayesian Metropolis-Coupled Markov Chain Monte Carlo. We do this for versions of the model in which corals are aggregated into a single state variable (the three-state model), and in which corals are separated into four state variables (the six-state model), in order to determine the appropriate level of aggregation. We also estimate the posterior distribution of predicted trajectories in each case.In both cases, the fitted trajectories were close to the observed data, but we had doubts about the biological plausibility of some parameter estimates. We suggest that informative prior distributions incorporating expert knowledge may resolve this problem. In the six-state model, the posterior distribution of state frequencies after 40 years contained two divergent community types, one dominated by free space and soft corals, and one dominated by acroporid, pocilloporid, and massive corals. The three-state model predicts only a single community type. We conclude that the three-state model hides too much biological heterogeneity, but we need more data if we are to obtain reliable predictions from the six-state model. It is likely that there will be similarly large, but currently unevaluated, uncertainty in the predictions of other coral reef models, many of which are much more complex and harder to fit to real data.  相似文献   

18.
Vermeij MJ  Sandin SA 《Ecology》2008,89(7):1994-2004
The local densities of heterospecifics and conspecifics are known to have profound effects on the dynamics of many benthic species, including rates of settlement and early post-settlement survivorship. We described the early life history of the Caribbean coral, Siderastrea radians by tracking the population dynamics from recently settled planulae to juveniles. Through three years of observation, settlement correlated with the abundance of other benthic organisms, principally turf algae (negatively) and crustose coralline algae (positively). In addition, adult density showed independent effects on coral settlement and early post-settlement survivorship. Settlement rates increased across low levels of adult cover and saturated at a maximum around 10% cover. Early post-settlement survivorship decreased with adult cover, revealing structuring density dependence in coral settlers. The earliest life stages of corals are defined by low survivorship, with survivorship increasing appreciably with colony size. However, recent settlers (one-polyp individuals, < 1-year-old) are more likely to grow into two-polyp juveniles than older single polyps (> 1-year-old) that were delayed in their development. The early benthic phase of corals is defined by a severe demographic bottleneck for S. radians, with appreciable density-dependent and density-independent effects on survivorship. For effective management and restoration of globally imperiled coral reefs, we must focus more attention on this little studied, but dynamic, early life history period of corals.  相似文献   

19.
Seven fringing reef complexes were chosen along the leeward coast (west) of Barbados to study the effects of eutrophication processes upon the scleractinian coral assemblages. The structure of scleractinian coral communities was studied along an eutrophication gradient with a quantitative sampling method (line transect) in terms of species composition, zonation and diversity patterns. On the basis of these data the fringing reefs were divided into three ecological zones: back reef, reef flat, and spur and groove. Statistically discernible and biologically significant differences in scleractinian coral community structure, benthic algal cover and Diadema antillarum Philippi densities were recorded among the seven fringing reefs. High correlations between environmental variables and biotic patterns indicate that the effects of eutrophication processes (nutrient enrichment, sedimentation, turbidity, toxicity and bacterial activity) were directly and/or indirectly affecting the community structure of scleractinian coral assemblages. In general, species diversity was most sensitive in delineating among-reef, and among-zone, differences, which were attributed to intensification of eutrophication processes. Porites astreoides Lamarck, P. porites (Pallas), Siderastrea radians (Pallas), and Agaricia agaricites (Linnaeus) were the most abundant coral species in the polluted southern reefs. The absence and/or low abundance of coral species previously characterized as well adapted to high turbidity and sedimentation [i.e. Montastrea cavernosa Linnaeus, Meandrina meandrites (Linnaeus)] indicate that eutrophication processes may adversely affect these species. It is suggested that sediment rejection abilities, combined with feeding and reproductive strategies, are the primary biological processes of scleractinian corals through which eutrophication processes directly and/or indirectly affect the structure of coral communities.  相似文献   

20.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号