首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A survey was done in 15 typical villages, 150 soil and 86 vegetable plant samples were taken in Jiaxin prefecture of the Taihu Lake region, northern Zhejian province. Results indicate that after 15-20 years land use changed from the paddy rice-wheat (or oilseed rape) double cropping system, to a continuous vegetable land has caused soil quality dramatic change. (1) Acidification: average soil pH was 5.4; about 61% of total samples were pH < 5.5. It was 0.9 units lower than 10 years ago with same upland vegetable cultivation and was 1.2 units lower than soil pH of paddy rice-wheat (or oilseed rape) rotation. (2) Fertilizer salt accumulation: the average salt content was 0.28%, among these about 36.2% of the total samples contained more than 0.3%. (3) Nitrate N and available phosphorus (P) over accumulation: on average it was 279 mg NO3-N/kg, and 45-115 mg P/kg. Nitrate N four times higher and available P 4-10 times more than it is in present paddy rice-wheat rotation soils respectively. This has caused wide concern because of possible groundwater and well drinking water pollution by leached nitrate N and the P losses to water by runoff from vegetable lands induce surface water eutrophication.  相似文献   

2.
A survey was done recently in Jiaxing city of Zhejiang Province in the Yangtze River Delta to compare the differences of soil microbiological properties among paddy soils with different land use including continuous open-field vegetable cultivation (OFVC), plastic-greenhouse vegetable cultivation (PGVC) and traditional rice–wheat rotation (RWR). The soil types included are percolating, permeable and waterlogged paddy soils. The results indicate that the microbial flora was markedly changed as the land use changed for all the three soil types. In continuous vegetable cultivation soils, especially in PGVC soils, the bacteria amounts decreased dramatically, but the fungal and actinomyce amounts increased as compared with RWR soils. The dehydrogenase activities decreased significantly in vegetable soils, especially in PGVC soils as compared with RWR soils. The microbial biomass C and the total phospholipid contents (TPL) in vegetable cultivation soil greatly decreased as compared with RWR soils. Biolog analysis indicated that the kinds of carbon sources that could be metabolized by native microbes in PGVC soils greatly decreased as compared with OFVC soils and RWR soils, revealing that microbial diversity had decreased since land use change. The activities of some soil enzymes including urease, invertase and phosphase were all lower in OFVC soils than those in RWR soils, and those in PGVC soils were the lowest. The degradation of microbiological activities in continuous vegetable cultivation soils, especially in PGVC soils, as compared with RWR soils might have been caused by soil acidification and accumulation of salts due to overuse of both organic and inorganic fertilizers in vegetable cultivation.  相似文献   

3.
A long-term field and lysimeter experiment under different amount of fertilizer-N application was conducted to explore the optimal N application rates for a high productive rice–wheat system and less N leaching loss in the Yangtse Delta region. In this region excessive applications of N fertilizer for the rice–wheat production has resulted in reduced N recovery rates and environment pollution. Initial results of the field experiments showed that the optimal N application rate increased with the yield. On the two major paddy soils (Hydromorphic paddy soil and Gleyed paddy soil) of the region, the optimal N application rate was 225–270 kg N hm–2 for rice and 180–225 kg N hm–2 for wheat, separately. This has resulted in the highest number of effective ears and Spikelets per unit area, and hence high yield. Nitrogen leaching in the form of NO 3 -N occurs mainly in the wheat-growing season and in the ponding and seedling periods of the paddy field. Its concentration in the leachate increased with the N application rate in the lysimeter experiment. When the application rate reached 225 kg N hm–2, the concentration rose to 5.4–21.3 mgN l–1 in the leachate during the wheat-growing season. About 60% of the leachate samples determined contained NO 3 -N beyond the criterion (NO 3 -N 10 mg l–1) for N pollution. In the field experiment, when the N application rate was in the range of 270–315 kg hm–2, the NO 3 -N concentration in the leachate during the wheat-growing season ranged from 1.9 to 11.0 mg l–1. About 20% of the leachate samples reached close to, and 10% exceeded, the criterion for N pollution. Long-term accumulation of NO 3 -N from leaching will no doubt constitute a potential risk of N contamination of the groundwater in the Yangtse Delta Region.  相似文献   

4.
研究了鄂南红壤区不同种植模式的旱地及坡荒地、不同轮作模式的水田、水田改旱菜地的土壤养分状况。本区土壤有机质含量和氮素含量较低,磷素普遍缺乏,钾素含量较低且呈下降趋势。土壤有机质及氮含量呈现水田类>水田改旱地类>旱地类;土壤磷含量则是水田改旱地类>水田类>旱地类;水田类钾含量明显低于旱地类和水田改旱地类,而且三熟制油菜-西瓜-晚稻种植模式下,土壤全钾及速效钾含量呈下降趋势。水田改为旱作是改善土壤水分状况的有效措施。  相似文献   

5.
不同施肥方式下紫色水稻土土壤肥力变化规律研究   总被引:1,自引:0,他引:1  
通过连续 12 a田间小区定位试验 ,研究了在不同施肥方式下 ,连年稻 -麦轮作的滇中地区紫色冲积性潴育型水稻土土壤肥力及产量变化的规律。结果表明 :厩肥 (O)处理与厩肥配合氮磷处理 (ONP)12 a后土壤肥力明显高于对照和单施化肥的 NP、NK、PK、NPK等 4处理 ,土壤有机质含量增加 8.4 g/kg以上 ,速效氮、速效磷、速效钾含量增加 14.6 %以上 ,土壤容重下降 0 .16以上 ;单施化肥的处理 ,土壤肥力的变化与对照无显著差异。  相似文献   

6.
To assess P losses to surface water by runoff during the rice season and by drainage flow during the winter wheat season, serial field trials were conducted in different types of paddy soils in the Tai Lake Region (TLR) during 2000 and 2001. Four P application rates were set as 0 (CK), 30, 150, and 300 kg P/hm2 for flooded rice trials and 0 (CK), 20, 80, 160 kg P/hm2 for winter wheat trials respectively. Field experiments were done in two locations with a plot size of 30 m2 and four replications in a randomized complete block design. A simplified lysimeter was installed for each plot to collect all the runoff or drainage flow from each event. Total P (TP) losses to surface water during rice season by runoff flow from four treatments were 150 (CK), 220 (T30), 395 (T150), 670 (T300) g P/hm2 in year 2000, and 298, 440, 1828, 3744 g P/hm2 in year 2001 respectively in Wuxi station, here the soil is permeable paddy soil derived from loam clay deposit. While the losses were 102, 140, 210, 270 in year 2000, and 128, 165, 359, 589 g P/hm2 in year 2001 respectively in Changshu station, here the soil is waterlogged paddy soil derived from silt loam deposit. During the winter wheat season, total P lost from the fields by drainage flow in the four treatments were 253 (CK), 382 (T20), 580 (T89), 818 (T160) g P/hm2 in year 2000–2001, and 573.3, 709.4, 1123.2, 1552.4 g P/hm2 in year 2001–2002 at the Wuxi station. While these were 395.6, 539.1, 1356.8, 1972.1 g P/hm2 in year 2000–2001, and 811.5, 1184.6, 3001.2, 5333.1 g P/hm2 in year 2001–2002 at the Changshu station. Results revealed that P fertilizer application rates significantly affected the TP concentrations and TP loads in runoff during the rice season, and by drainage flow during the winter wheat season. Both TP loads were significantly increased as the P application rate increases. The data indicate that TP losses to surface water were much higher during the winter wheat season than during the rice season in two tested sites. The data also reveal that the annual precipitation and evaporation rate affected the soil P losses to surface water significantly. Year 2000 was relatively dried with higher evaporation thus P losses to water by both runoff and drainage flow were less than in year 2001 which was a relatively wet year with lower evaporation. Results indicate that texture, structure of the soil profile, and field construction (with or without ridge and deep drains) affected soil P losses to surface water dramatically. Annual possible TP lost to water at the application rate of 50 kg P/hm2 year tested in TLR were estimated from 97 to 185 tones P from permeable paddy soils and 109–218 tones P from waterlogged paddy soils. There was no significant difference of TP lost between the CK and the T50 treatments in both stations, which indicate that there is no more TP lost in field of normal P fertilizer application rate than in control field of no P fertilized. Much higher TP lost in runoff or drainage flow from those other P application rates treatments than from the T50 treatment, which suggest that P losses to surface water would be greatly increasing in the time when higher available P accumulation in plough layer soil in this region.  相似文献   

7.
湖北省土壤有效硅含量分布   总被引:1,自引:0,他引:1  
在全省主要土壤上布点,取土壤样品529个.全省土壤有效硅(SiO2)平均含量为202.6mg/kg,含量变化范围为15.7-725.5mg/kg,低于缺硅临界值(<95mg/kg)的样点占总样点的38.2%.其土壤有效硅平均含量高的有:黄褐土(471.3mg/kg)、石灰土(377.3mg/kg)和灰潮土(332.7mg/kg);平均含量中等的有:紫色土(189、5mg/kg)、水稻土(174.7mg/kg)、潮土(110.7mg/kg)、黄棕壤(106.0mg/kg);平均含量低于缺硅临界值的有红壤(89.1mg/kg)和黄壤(41.4mg/kg)土壤有效硅含量对土壤母质有依赖关系.土壤pH值及水稻上不同水型对土壤有效硅含量也有影响,土壤有效硅含量与土壤有效磷、铁、锰存在着相关关系.  相似文献   

8.
通过在湖北省几种主要成土母质上对不同水型水稻土施用氮磷肥效果及施用技术的研究.初步明确了氮肥的施用效果为淹育型水稻土>潴育型水稻土>潜育型水稻土.磷肥效果与之相反.从土壤养分状况、氮肥和磷肥的当季利用率、土壤微生物、土壤还原性物质含量和水土温度等方面,初步分析了不同水型水稻土氮磷肥效果差异的原因.提出了不同水型水稻土氮磷肥的施用技术.  相似文献   

9.
对湖北省的主要旱地土壤种植多茬作物后油菜生产锰毒的原因进行了研究。结果表明,供试土壤pH值较原土样下降了1.0个单位。除石灰性土壤外,其它中酸性土壤交换性锰明显增加,造成油菜对锰吸收过量,同时由于吸收过程中锰铁拮抗作用的存在,植株在土壤锰毒发生后吸收的铁量下降,使体内锰铁比上升。  相似文献   

10.
设施土壤pH值与有机质演变特征研究   总被引:19,自引:0,他引:19  
邓玉龙  张乃明 《生态环境》2006,15(2):367-370
设施土壤的pH、有机质与土壤环境质量及设施栽培作物生产水平密切相关。文章对云南不同区域、不同大棚种植年限、不同轮作制度的设施土壤pH与有机质的演变特征进行研究,结果表明:大棚种植年限长的地区,土壤pH、有机质变化明显;随着大棚种植年限的增长,土壤pH呈下降趋势,有机质含量则呈上升趋势;随着土壤层次的加深,大棚土壤pH逐渐升高,而有机质则逐渐降低;不同轮作方式,花-菜轮作比菜-菜轮作有利于增加有机肥对设施土壤pH的缓冲性。  相似文献   

11.
Field experiments were done in two sites, Yixing and Changshu, Jiangsu province, China, to study P movement and leaching in flooded paddy soils. P movement in soil was investigated by using the KH2 32PO4 tracker method, and the amount of P leached from the soil layer in different depths was estimated by measuring P concentrations in the soil solution and saturated hydraulic conductivities in field. Determination was done about one month after P application. There was 46% and 42% of total 32P retained in the 0–5cm layer of soil in the Yixing site and in the Changshu site respectively. The 32P retained in the 25–30 cm layer was only about 1–2% of the total 32P added. Furthermore, 8.01% of 32P in the soil of Yixing site and 16.8% of 32P in the soil of Changshu site was lost from the layer 0–30cm soil. The seasonal amounts of P leached from the top soil layer and from bottom layer are about 4.5–5.8% and 1.6–2.1% of the total P application, respectively. Changes of total P concentrations in soil solutions during rice growth showed that the fertilizer P applied before flooding of the paddy fields suffered a flash leaching loss and a slow leaching loss. We concluded that the fertilizer P could quickly move in the flooded paddy rice field and parts of it can enter into surface water and ground water. Unless the P application is well managed the risk of P loss and consequently environmental pollution exist.  相似文献   

12.
免耕生态系统中土壤动物对土壤养分影响的研究   总被引:3,自引:0,他引:3  
对紫色水稻土自然免耕生态系统中土壤动物群落结构的变化及其对土壤养分的影响进行了调查研究。结果表明.水稻土免耕耕作制度有利于土壤动物的生长繁殖.并能改善土壤化学性质。土壤动物平均密度是垄作免耕>垄作常耕>平作免耕>平作常耕。免耕土壤中有效氮、有效磷、有效钾和有机质含量均分别高于常耕土壤。  相似文献   

13.
The agricultural non-point source pollution by nitrogen (N) and phosphorus (P) loss from typical paddy soil (whitish soil, Bai Tu in Chinese) in the Taihu Lake region was investigated through a case study. Results shown that the net load of nutrients from white soil is 34.1 kg ha–1 for total nitrogen (TN), distributed as 19.4 kg ha–1, in the rice season and 14.7 kg ha–1in the wheat season, and for total phosphorus (TP) 1.75 kg ha–1, distributed as 1.16 kg ha–1 in the rice season and 0.58 kg ha–1 in the wheat season. The major chemical species of N loss is different in the two seasons. NH4-N is main the form in the rice season (53% of TN). NO3-N is the main form in wheat season (46% of TN). Particle-P is the main form in both seasons, (about 56% of TP). The nutrient loss varied with time of the year. The main loss of nutrients happened in the 10 days after planting, 64% of TN and 42% of TP loss, respectively. Rainfall and fertilizer application are the key factors which influence nitrogen and phosphorus loss from arable land, especially rainfall events shortly after fertilizer application. So it is very important to improve the field management of the nutrients and water during the early days of planting.  相似文献   

14.
贵州主要耕作土壤的脲酶活性研究   总被引:1,自引:0,他引:1  
首次较系统、全面地测定了贵州省主要耕作土壤的脲酶活性,分别探讨了水稻土和旱作土脲酶活性与土壤主要理化性状之间的关系。结果表明:耕作土壤脲酶活性因土壤利用状况、土壤类型和土壤肥力水平不同而有明显的差异,供试水稻土、旱作土和菜园土的平均脲酶活性分别为155、277和703mgNH4-N/100g土·24h;不同类型水稻土和旱作土具有不同的脲酶活性水平,这主要受成土条件、成土过程和土壤属性的影响;水稻土和旱作土的脲酶活性均随土壤肥力水平的提高而增强,说明脲酶活性强弱是表征土壤肥力高低的重要指标之一。回归分析表明,土壤脲酶活性主要受土壤有机质、氮、磷、钾等因素的影响,其中土壤基础铵量对耕作土壤脲酶活性的影响最大。水稻土脲酶活性还受土壤通透性的制约.而旱作土的则主要受土壤养分状况的影响。  相似文献   

15.
坝上地区土地利用与覆被变化对土壤养分的影响   总被引:1,自引:0,他引:1  
坝上地区是典型的农牧交错带 ,生态环境十分脆弱。研究表明 ,解放后 ,该区土地利用与土地覆被状况经历了多次反复的变动。 2 0世纪 80年代以前 ,草地大规模改变为旱地 ,部分改为林地 ;90年代初 ,旱地又逐步被改为草地、林地和水田使用。土地利用与土地覆被的变化引起土壤中有机质、全N、全P、全K、碱解N以及有效态P、K、B、Mo、Mn、Zn、Cu和Fe等养分呈有规律的改变。当土地由草地变为林地、旱地变为林地、旱地变为水田时 ,总体养分增多。但也有例外 ,尤其是碱解N、速效P和速效K以及微量元素 ,有时出现与上述规律不一致的情况。  相似文献   

16.
Addition of plant residue into soils improves soil physiochemical properties and its fertility. Rapeseed residue is an emerging N source to paddy soils via rice-rape double-cropping practice. The objective of this study was to evaluate the effects of rapeseed residue and eggshell waste on chemical changes and enzyme activity in the rice paddy soil. The powdered eggshells at 0, 1, 3, and 5% were applied once to 7.0 kg paddy repacked soils in each pot treated with the rapeseed residue or the conventional N, P, and K fertilisers. Eight rice seedlings (Oriza sativa L. cv. Ilmibyeo) (40 days after sowing) were transplanted to the treated each pot. The contents of total C (TC) and N (TN), and organic matter (OM) were significantly increased in soils treated with the rapeseed residue compared to the N, P, and K fertilisers. With the addition of eggshell containing ~92% CaCO3, a considerable increase of soil pH was observed in soils treated with the rapeseed residue and the N, P, and K fertilisers, compared to the untreated soil. Activities of β-glucosidase, urease, and arylsulfatase enzymes were higher in soils treated with the rapeseed residue than soils treated with the N, P, and K fertilisers. The eggshell additions at 1, 3, and 5% into soils treated with the rapeseed residue increased enzyme activity mainly resulting from N mineralisation, whereas no change in enzyme activity was observed in the soils treated with the NPK fertiliser. The combined use of the rapeseed residue and the eggshells can be beneficial to improve soil environment.  相似文献   

17.
研究了苏南稻田不同种植制度与土壤持续生产力的关系。维持土壤持续生产力的实质是维持土壤肥力,多熟种植制度养分产出增加,加大了土壤养分的消耗,但有机物质生产增加,有利于有机物质归还和土壤有机质平衡。在多熟种植制度中间套插种绿肥等豆科养地作物和油菜、蔬菜等培肥作物,结合秸秆还田和轮作,将能维持稻田多熟制的土壤持续生产力。  相似文献   

18.
溶解态有机氮(DON)是土壤中活跃的氮库,其生态环境行为与它的化学组成和粒径分布密切相关。为评估热带滨海区不同土地利用方式对不同粒径中土壤溶解性有机氮组成特征的影响,从水稻田、橡胶园、菜园和果园采集土壤样品,通过一系列微滤和超滤(0.7,0.45,0.2,0.1μm,100,10,1 kDa)对土壤溶解性有机氮分级,并使用连续流动分析仪、三维荧光光谱和红外光谱研究了滤液中溶解态有机氮、无机氮的含量及荧光组分和有机官能团特征。结果表明,4种土地利用背景下土壤DON值的范围为5.25-10.88 mg·kg^-1,其大小顺序为水稻>菜园>果树>橡胶,且DON与溶解性总氮(DTN)的比值范围为26.08%-67.11%,其中橡胶土最高,水稻土最低;不同粒径下4种土地利用类型土壤DON主要集中在<100 kDa的粒径中,其值范围为4.85-9.48 mg·kg^-1,占全量的85.89%-92.41%。三维荧光光谱(3D-EEMs)及平行因子分析表明,4种土地利用背景下土壤DON含有两种类腐殖质组分及一种类蛋白质组分,且以类腐殖质组分为主,占比54.00%-77.67%;类蛋白组分对土地利用变化敏感,且随着粒径的减小,类蛋白组分占比增加,在<1 kDa组分中比例最高。红外光谱结果表明,4种土地利用背景下土壤DON主要在6个位置有相似的吸收峰,包含3410 cm^-1、1636 cm^-1、1402 cm^-1、1138-1035 cm^-1、673 cm^-1、602 cm^-1,不同土地利用背景下各吸收峰的透光度不同,强度最大的吸收来自游离的胺类N-H伸缩振动;水稻、菜园土壤DON芳香物质含量较高,结构较复杂。了解DON的组成与粒径分布对土地利用的响应,对进一步研究其生态环境行为具有重要意义。  相似文献   

19.
弋良朋  王祖伟 《生态环境》2010,19(4):798-802
为了利用被镉污染的盐土,通过实验分析镉污染盐土中三种盐对油菜(Brassica napus)富集镉影响的差异性,探明不同类型镉污染盐土上种植油菜的植物修复效果。以镉超累积植物油菜为研究植物,通过温室盆栽土培试验,将油菜在含有不同质量分数盐(wS:0 g·kg^-1,2 g·kg^-1,4 g·kg^-1,6 g·kg^-1)的含镉(wCd:10 mg·kg^-1)土壤中培养60天,研究油菜对镉的生物富集因子、植株内地上部分和根部镉的质量分数变化。选择土壤中三种主要盐的类型,即氯化钠、硫酸钠和碳酸钠作为分析和研究对象。结果表明,含碳酸钠的土壤对油菜吸收镉有抑制作用,含硫酸钠的土壤对油菜吸收镉也有抑制作用,但效果没有碳酸钠的土壤大,含氯化钠的土壤对油菜吸收镉的影响不显著,只是在高质量分数时对油菜吸收镉有一些促进作用。在含不同类型盐的土壤中,不同土壤盐对油菜富集镉的能力也有显著的差异,土壤中氯化钠对油菜根部富集镉的能力没有显著影响,而对油菜地上部分富集镉的能力有一定的促进作用;土壤中的碳酸钠对油菜地上和地下部分富集镉的能力都有显著的抑制作用,不利于油菜对镉的富集。  相似文献   

20.
甲烷(CH4)和氧化亚氮(N2O)是仅次于二氧化碳(CO2)的重要温室气体,农田是大气CH4和N20的重要来源,但目前农业措施对CH4和N2O排放的影响尚不明确。以水旱轮作稻田旱作季休闲为对照,采用静态箱.气相色谱法研究了种植紫云英、黑麦草、冬小麦以及油菜等4种作物对稻田旱作季CH4和N2O排放及其温室效应的影响。结果表明:水旱轮作稻田旱作季CH4排放通量较低,而N2O排放较为明显。稻田旱作季CH4平均排放通量表现为油菜〉黑麦草〉冬小麦〉紫云英〉休闲,依次为8.96、7.19、6.94、6.52和6.02μg·m-2·h-1,季节N20平均排放通量的顺序是油菜(61.1lμg·m-2·h-1)〉冬小麦(52.5lag·m-2·h-1)〉黑麦草(34.0μg·m-2·h。)〉休闲(15.3lμg·m-2·h-1)〉紫云英(13.6lμg·m-2·h-1)。稻田旱作季种植不同作物对CH4和N2O季节总排放量的影响达到极显著水平(P〈0.01),C144和N2O季节总排放量均以种植油菜为最大,分别达到43.2和294.7mg·m-2,比对照休闲增加49%和299%。种植油菜、冬小麦和黑麦草较对照休闲显著增加稻田旱作季总增温潜势(P〈0.05),紫云英和休闲处理间总增温潜势无显著差异(P〉0.05)。研究表明,种植油菜、冬小麦和黑麦草等作物由于氮肥的施用增加了水旱轮作稻田旱作季温室效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号