首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of slag composition on the hydration characteristics of slag blended cement (SBC) pastes. Synthetic slag samples were prepared by melting CaO-modified and Al(2)O(3)-modified municipal solid waste incinerator (MSWI) fly ash. MSWI fly ash was mixed with 5% CaO and 5% Al(2)O(3) (by weight), respectively, resulting in two fly ash mixtures. These mixtures were then melted at 1400 degrees C for 30 min to produce two types of slag with different contents, designated at C-slag and A-slag. Both the C-slag and A-slag samples exhibited a pozzolanic activity index higher than the unmodified slag sample. The results show that the synthetic slags all met the Taiwan EPA's current regulatory thresholds. These synthetic slags were then blended with ordinary Portland cement (OPC) at various weight ratios ranging from 10 to 40%. The 28-day strength of the C1 paste was higher than that developed by the OPC paste, suggesting that the C-slag contributed to the earlier strength of the SBC pastes. At curing times beyond 28 days, the strength of the A1 paste samples approached that of the OPC paste samples. It can be seen from this that increasing the amount of calcium and aluminum oxide increases the early strength of SBC. The C-slag blended cement paste samples showed an increase in the number of fine pores with the curing time, showing that the C-slag enhanced the pozzolanic reactions, filling the pores. Also, the incorporation of a 10% addition of C-slag also tended to enhance the degree of hydration of the SBC pastes during the early ages (3-28 days). However, at later ages, no significant difference in degree of hydration between the OPC pastes and the SBC pastes was observed with the 10% C-slag addition. However, the incorporation of A-slag did decreased the degree of hydration. A slag blend ratio of 40% significantly decreased the hydration degree.  相似文献   

2.
The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C(m)) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0~3.0 and firing the raw mixes at 1250 °C for 2h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.  相似文献   

3.
By utilising MSW fly ash from the Shanghai Yuqiao municipal solid waste (MSW) incineration plant as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by combining SiO(2), MgO and Al(2)O(3) or bottom ash as conditioner of the chemical compositions and TiO(2) as the nucleation agent. The optimum procedure for the glass-ceramics is as follows: melting at 1500 degrees C for 30 min, nucleating at 730 degrees C for 90 min, and crystallization at 880 degrees C for 10h. It has been shown that the diopside-based glass-ceramics made from MSW fly ash have a strong fixing capacity for heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd) etc.  相似文献   

4.
The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.  相似文献   

5.
This article focuses on the effects of metallic aluminum contained in municipal solid waste incineration (MSWI) fly ashes on cement-based materials in which they are added. The ash under study was treated by an industrial physicochemical process of neutralization. The paper also presents a method to quantify the metallic aluminum content of ash: it consists in measuring the amount of hydrogen gas produced by the oxidation reaction of metallic aluminum. This method is simple and fast. Results show that studied ash contains an appreciable amount of metallic aluminum. Investigations were carried out to study the incorporation of the ash in concrete: in this case, the presence of metallic aluminum is worrying because it could be responsible for disorders in concrete. In fact, swellings are observed on cement pastes and mortars containing ash during the first 24 h of hydration. A test based on hydrostatic weighing permits to quantify the swelling of fresh cement paste and to study the evolution of this swelling. Causes of swelling are analyzed. Results show that ettringite formation occurs after the end of the expansion reaction. So it can be concluded that metallic aluminum is the sole responsible for the observed swelling. Consequences of swelling are also analyzed by measuring compressive strength of ash-containing mortars: this swelling leads to cracks in the mortars and significant decrease of their compressive strength.  相似文献   

6.
通过试验研究再生骨料混凝土中粉煤灰和再生骨料对混凝土强度的影响。采用粉煤灰替代部分水泥、再生骨料替代部分天然粗骨料的方法,通过正交试验测定混凝土立方体抗压强度的方法,来研究粉煤灰对再生骨料混凝土强度的影响。试验得出:当再生骨料掺量为20%~30%时,粉煤灰的最佳掺量为20%左右;当再生骨料掺量高于40%、粉煤灰掺量高于20%时,其混凝土拌合物搅拌时间不小于240 s,且当粉煤灰在20%~30%时,可获得较理想的混凝土抗压强度;当粉煤灰的掺入量分布在20%~30%、再生骨料的最佳掺量为50%时,可获得较理想的混凝土抗压强度。由此得出,合理的再生骨料、粉煤灰掺量对混凝土的抗压强度影响并不明显且有提高的趋势,对降低混凝土成本,提高建筑垃圾的再生利用,有一定的经济效益和社会效益。  相似文献   

7.
Recycling MSWI bottom and fly ash as raw materials for Portland cement   总被引:5,自引:0,他引:5  
Municipal solid waste incineration (MSWI) ash is rich in heavy metals and salts. The disposal of MSWI ash without proper treatment may cause serious environmental problems. Recently, the local cement industry in Taiwan has played an important role in the management of solid wastes because it can utilize various kinds of wastes as either fuels or raw materials. The objective of this study is to assess the possibility of MSWI ash reuse as a raw material for cement production. The ash was first washed with water and acid to remove the chlorides, which could cause serious corrosion in the cement kiln. Various amounts of pre-washed ash were added to replace the clay component of the raw materials for cement production. The allowable limits of chloride in the fly ash and bottom ash were found to be 1.75% and 3.50% respectively. The results indicate that cement production can be a feasible alternative for MSWI ash management. It is also evident that the addition of either fly ash or bottom ash did not have any effect on the compressive strength of the clinker. Cement products conformed to the Chinese National Standard (CNS) of Type II Portland cement with one exception, the setting time of the clinker was much longer.  相似文献   

8.
Improvements of nano-SiO2 on sludge/fly ash mortar   总被引:1,自引:0,他引:1  
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.  相似文献   

9.
A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.  相似文献   

10.
Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.  相似文献   

11.
Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values.  相似文献   

12.
Solidification in a cementitious matrix is a viable alternative for low-level nuclear waste management; it is therefore important to understand the behavior and properties of such wasteforms. We have examined the cementitious solidification of simulated off-gas waste streams resulting from the vitrification of low-level nuclear waste. Different possible methods for scrubbing the off-gasses from a vitrifier give rise to three possible types of waste compositions: acidic (from aqueous dissolution of volatile NOx and POx carried over from the vitrifier), basic (from neutralizing the former with sodium hydroxide), and fully carbonated (arising from a direct-combustion vitrifier). Six binder compositions were tested in which ordinary Portland cement was replaced at different proportions by fly ash and/or ground granulated blast furnace slag. A high solution to binder ratio of 1l/1 kg was used to minimize the volume of the wasteform and 10% attapulgite clay was added to all mixes to ensure that the fresh mix did not segregate prior to setting. The 28-day compressive strengths decreased when a high proportion of cement was replaced with fly ash, but were increased significantly when the cement was replaced with slag. The heats of hydration at early age for the various solids compositions decreased when cement was replaced with either fly ash or slag; however, for the fly ash mix the low heat was also associated with a significant decrease in compressive strength. High curing temperature (60 degrees C) or the use of extra-fine slag did not significantly affect the compressive strength. Recommendations for choice of binder formulations and treatment of off-gas condensates are discussed.  相似文献   

13.
Fly ash and granulated blast furnace slag (GBFS) are major by-products of thermal and steel plants, respectively. These materials often cause disposal problems and environmental pollution. Detailed laboratory investigations were carried out on cement stabilized fly ash-(GBFS) mixes in order to find out its suitability for road embankments, and for base and sub-base courses of highway pavements. Proctor compaction test, unconfined compressive strength (UCS) test and California Bearing Ratio (CBR) test were conducted on cement stabilized fly ash-GBFS mixes as per the Indian Standard Code of Practice. Cement content in the mix was varied from 0% to 8% at 2% intervals, whereas the slag content was varied as 0%, 10%, 20%, 30% and 40%. Test results show that an increase of either cement or GBFS content in the mixture, results in increase of maximum dry density (MDD) and decrease of optimum moisture content (OMC) of the compacted mixture. The MDD of the cement stabilized fly ash-GBFS mixture is comparably lower than that of similarly graded natural inorganic soil of sand to silt size. This is advantageous in constructing lightweight embankments over soft, compressible soils. An increase in percentage of cement in the fly ash-GBFS mix increases enormously the CBR value. Also an increase of the amount of GBFS in the fly ash sample with fixed cement content improves the CBR value of the stabilized mix. In the present study, the maximum CBR value of compacted fly ash-GBFS-cement (52:40:8) mixture obtained was 105%, indicating its suitability for use in base and sub-base courses in highway pavements with proper combinations of raw materials.  相似文献   

14.
A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials.  相似文献   

15.
Kinetic analysis of thermally activated phase transformations in drinking water treatment plant (DWTP) sludge suggests its applicability in the materials of construction. The suggested prediction has already been verified on the sludge-based bricks. The present study deals with incorporating the same sludge in the raw meal for the synthesis of Portland cement clinkers. For this purpose, two raw meals are prepared with varying sludge loadings. The sludge effect on reactivity of the crude mixture is evaluated on the basis of the free lime content sintered at various elevated temperatures. The results of chemical and mineralogical and scanning electron microscopic analyses reveal fine mineralogical contents of Portland clinkers calcined at 1450 and 1500 °C. Moreover, the cements prepared from these clinkers by the introduction of certain proportions of gypsum, depict significant durability. The obtained results elucidate that the studied DWTP sludge-incorporated Portland cement shows considerable potential to be commercialized.  相似文献   

16.
Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction.  相似文献   

17.
In this study, we propose a "washing-calcination-conversion of washed fly ash into cement material with bottom ash" (WCCB) system to reduce the amount of fly ash that must be specially treated so it can be used as raw cement material. Calcium hydroxide (Ca(OH)2) is widely used in air-pollution control devices of incinerators while sodium bicarbonate (NaHCO3) is not. We conducted single-, double-, and triple-washing experiments to compare the washing characteristics of two types of fly ash. Unlike NaHCO3 fly ash, Ca(OH)2 fly ash has almost twice as much washed residue and almost 2.5 times more chlorine after the same washing procedure. After washing once, the washing frequency is also important for NaHCO3 fly ash, while the mixing time and liquid/solid ratio are more critical for Ca(OH)2 fly ash. The use of NaHCO3 is more suitable for the WCCB system.  相似文献   

18.
Coal ash from power stations has long been used successfully in the cement industry as binders in several Portland formulations. This is not the case for municipal solid waste (MSW) ash as chloride concentrations, ranging from 10 to 200 g kg(-1) dry weight in the bottom and fly ash, respectively, exceed the maximum allowable concentration in most cement mixtures. To reduce chloride content in MSW bottom ash, a laboratory investigation was carried out based on the exhaustive washing in tap water. The influence of operative parameters such as temperature, granulometric properties and solid/liquid ratio of extraction was evaluated. In addition to optimization of the mentioned operative parameters for full-scale application, the paper gives preliminary indications on mechanistic aspects of the washing operation.  相似文献   

19.
Unburned carbon (UC) is the major source of organic contaminants in municipal solid waste (MSW) fly ash. So most organic contaminants can be removed by the removal of the UC from the MSW fly ash. In this paper, we first used a technique of column flotation to remove UC from MSW fly ash. The influences of column flotation parameters on the recovery efficiency of UC were systematically studied. It was found that the UC recovery efficiency was greatly influenced by the gas flow rate, pH value, collector kerosene's concentration and the types of fly ash. By optimizing the above parameters, we have successfully removed 61.2% of the UC from MSW fly ash having 5.24% UC content. The removal mechanism was well accounted for the kinetic theory of column flotation and surface-chemistry theory. The results indicate that the column flotation technique is effective in removing the UC from MSW fly ash, and show that there is a strong possibility for practical application of this technique in removing the organic contaminants from MSW fly ash.  相似文献   

20.
The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3–5 wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号