首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A dynamic model for nitrifying trickling filters is developed, based on material balances in the biofilm and the bulk liquid. The model predicts the profile of ammonia as a function of the operating parameters (volumetric flow rate and feed ammonia concentration) and the biofilm thickness as a function of filter depth and time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
4.
The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90–99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.  相似文献   

5.
Fixed biomass technologies, such as rotating biological contactors or biodiscs, have been applied for wastewater depuration both in large and medium–small-sized agglomerations. Biofilm’s composition and microorganism activity are essential parameters for the successful operation and control of these systems. Biofilm’s thickness and total dry weight have been widely used for biofilm’s characterization but, actually, are not sufficient to describe biofilm activity. In fact, biofilm’s activity is not proportional to the quantity of fixed biomass, but increases with the thickness of biofilm up to a determined level called the “active thickness”. Above this level, the diffusion of nutrients through the film becomes a limiting factor. A stable, thin, and active biofilm thus offers numerous advantages in water and wastewater treatment. Different parameters have been used to evaluate biofilm’s activity. The specific oxygen uptake rate, INT-dehydrogenase activity, and the ratio active/total cells have been applied for that purpose. These methods are not only simple and rapid but also sensitive, precise, and representative. The results obtained confirm the potential of the microbial activity measurements studied for an accurate biofilm’s characterization and biomass activity estimation in fundamental research and for the practical operation and control of fixed biomass depuration systems.  相似文献   

6.
The assessment of lotic ecosystem quality plays an essential role to help determine the extent of environmental stress and the effectiveness of restoration activities. Methods that incorporate biological properties are considered ideal because they provide direct assessment of the end goal of a vigorous biological community. Our primary objective was to use biofilm lipids to develop an accurate biomonitoring tool that requires little expertise and time to facilitate assessment. A model was created of fatty acid biomarkers most associated with predetermined stream quality classification, exceptional warm water habitat (EWH), warm water habitat (WWH), and limited resource (LR-AMD), and validated along a gradient of known stream qualities. The fatty acid fingerprint of the biofilm community was statistically different (P?=?0.03) and was generally unique to recognized stream quality. One striking difference was essential fatty acids (DHA, EPA, and ARA) were absent from LR-AMD and only recovered from WWH and EWH, 45 % more in EWH than WWH. Independently testing the model along a stream quality gradient, this model correctly categorized six of the seven sites, with no match due to low sample biomass. These results provide compelling evidence that biofilm fatty acid analysis can be a sensitive, accurate, and cost-effective biomonitoring tool. We conceive of future studies expanding this research to more in-depth studies of remediation efforts, determining the applicable geographic area for the method and the addition of multiple stressors with the possibility of distinguishing among stressors.  相似文献   

7.
This paper presents a new mathematical model and a two-layer neural network approach to predict the single droplet collection efficiency (SDCE), η d, of countercurrent spray towers. SDCE values were calculated using MATLAB® algorithm for 205 different artificial scenarios given in a large range of operating conditions. Theoretical results were compared with outputs obtained from a two-layer neural network and DataFit® scientific software. The predicted model developed from linear–nonlinear regression analysis and network outputs agreed with the theoretical data, and all predictions proved to be satisfactory with a correlation coefficient of about 0.921 and 0.99, respectively. By using the proposed model, iterations between Reynolds number (Re), drag coefficient (C D) and terminal velocity values (v T) were neglected for a large range of operating conditions. SDCE values were also obtained speedily and practically for five main operating inputs used in the model.  相似文献   

8.
Portions of the Boulder River watershed contain elevated concentrations of arsenic, cadmium, copper, lead, and zinc in water, sediment, and biota. We measured concentrations of As, Cd, Cu, Pb, and Zn in biofilm and macroinvertebrates, and assessed macroinvertebrate assemblage and aquatic habitat with the objective of monitoring planned remediation efforts. Concentrations of metals were generally higher in downstream sites compared with upstream or reference sites, and two sites contained metal concentrations in macroinvertebrates greater than values reported to reduce health and survival of resident trout. Macroinvertebrate assemblage was correlated with metal concentrations in biofilm and macroinvertebrates. However, macroinvertebrate metrics were significantly correlated with a greater number of biofilm metals (8) than metals in invertebrates (4). Lead concentrations in biofilm appeared to have the most significant impact on macroinvertebrate assemblage. Metal concentrations in macroinvertebrates were directly proportional to concentrations in biofilm, indicating biofilm as a potential surrogate for monitoring metal impacts in aquatic systems.  相似文献   

9.
In this report, the development of an online, noninvasive, measurement method of the biofilm thickness in a liquid phase is presented. The method is based in the analysis of the ultrasound wave pulse-echo behavior in a liquid phase reproducing the real reactor conditions. It does not imply the removal of the biomass from the support or any kind of intervention in the support (pipes) to detect and perform the measurements (non-invasiveness). The developed method allows for its sensor to be easily and quickly mounted and unmounted in any location along a pipe or reactor wall. Finally, this method is an important innovation because it allows the thickness measurement of a biofilm, in liquid phase conditions that can be used in monitoring programs, to help in scheduling cleaning actions to remove the unwanted biofilm, in several application areas, namely in potable water supply pipes.  相似文献   

10.
采用投加悬浮填料方法和高通量测序技术研究新疆干旱寒冷地区污水处理厂的硝化、反硝化速率及生物膜菌群.结果表明,环境温度与水温具有良好的相关性;悬浮填料对氨氮和NO3--N均有降解作用,平均去除率分别为75.72%和81.42%;悬浮填料填充率在20% ~30%、曝气量在6.0 m3/h~6.5 m3/h时,总氮平均去除率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号