首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A Wasteload allocation model, named Cost-Flow-Augmentation Model involving wastewater treatment and flow augmentation as a method of pollution abatement has been developed. The cost functions for wastewater treatment were developed as power functions of biochemical oxygen demand (BOD) removal using the regression module of the SPSS10 software. The cost function for flow augmentation was also developed using a regression between cost of dam/barrage and corresponding flow released from upstream reservoir for downstream water quality improvement. The response of wasteloads and flow augmentation on the water quality was quantified in terms of transfer coefficient calculated using the QUAL2E water quality simulation model. The performance of these models is demonstrated on the 22-km-long Delhi stretch of river Yamuna, India. Optimal solutions of the formulated models were obtained using the Web-based interactive non-differentiable interactive multiobjective bundle-based optimization system software. The optimal solutions obtained reveal that flow augmentation is not an economically feasible pollution abatement option for the Delhi stretch of river Yamuna.  相似文献   

2.
The review discusses six major public domain water quality models currently available for rivers and streams. These major models, which differ greatly in terms of processes they represent, data inputs requirements, assumptions, modeling capability, their strengths and weaknesses, could yield useful results if appropriately selected for the desired purposes. The public domain models, which are most suitable for simulating dissolved oxygen along rivers and streams, chosen in this review are simulation catchment (SIMCAT), temporal overall model for catchments (TOMCAT), QUAL2Kw, QUAL2EU, water quality analysis simulation program (WASP7), and quality simulation along rivers (QUASAR). Each of these models is described based on a consistent set of criteria-conceptualization, processes, input data, model capability, limitations, model strengths, and its application. The results revealed that SIMCAT and TOMCAT are over-simplistic but useful to quickly assess impact of point sources. The QUAL2Kw has provision for conversion of algal death to carbonaceous biochemical oxygen demand (CBOD) and thus more appropriate than QUAL2EU, where macrophytes play an important interaction. The extensive requirement of data in WASP7 and QUASAR is difficult to justify the time and costs required to set up these complex models. Thus, a single model could not serve all wide range of functionalities required. The choice of a model depends upon availability of time, financial cost and a specific application. This review may help to choose appropriate model for a particular water quality problem.  相似文献   

3.
Belgaum city is a developmental hub of Karnataka State in India. In the recent time, the Government of Karnataka has planned to set up many processing industries in the vicinity of Belgaum to meet the growing needs of the region and to ease out the pressure on the already existing industrial hubs in Karnataka State. Ghataprabha, a tributary of river Krishna, is one of the major sources of water supply to Belgaum city and adjoining areas. During the last decade, a lot of anthropogenic activities such as unplanned agricultural activities are ongoing in many parts of the catchment. Therefore, people of Belgaum are more concerned about the quality of water in Ghataprabha river. Considering the significance of water quality of the river, surface water samples were collected during Pre- and Post-monsoon season from selected locations and analyzed for both physical and chemical constituents in the laboratory. The results indicate that the chemical parameters such as bicarbonates, sulphates, chlorides, sodium, potassium, calcium and magnesium are within the permissible limits. QUAL2E model was applied to assess the impact of point and non-point sources of pollution on the river water quality. Results show that the water quality conditions are highly acceptable all along the river stretch. Further, the variation of DO–BOD5 with river discharge was also estimated. Also, a significant variations in DO (decrease in DO) with the increase in river flow was observed. However, at the downstream end, considerable improvement in DO was noticed which is attributed to the damming effect of the reservoir.  相似文献   

4.
Minho River, also called Miño (in Spain), extends to about 300 km from Spain to Portugal. The source of the river lies in Spain and in the last 75 km, the river defines the border between Portugal and Spain. Under the scope of a cooperation project between North Portugal and Galicia region of Spain, titled: “Valorization of the natural resources of the Minho/Miño drainage basin”, seven water-sampling campaigns were carried out during the last 2 years in Minho River basin. Seven sampling sites were selected along the international stretch, and five were chosen in the main Portuguese and Spanish tributaries of Minho River. Water quality based on the physicochemical and microbial parameters was assessed. According to the Portuguese legislation for surface waters, the international section of Minho River presents a reasonably good water quality (BOD5 <5 mg/L, TNK <2 mg/L, and total phosphorous <1 mg P/L). Valença and Louro were found to be the most polluted sampling sites and Louro the most polluted tributary (maximum values observed: TSS?=?26 mg/L, BOD5?=?6.6 mg O2/L, COD?=?20.8 mg O2/L, total nitrogen?=?9.9 mg N/L; minimum value observed: OD?=?1.3 mg O2/L). A one-dimensional stream water quality model QUAL2Kw was calibrated using data measured in field surveys along the international stretch of Minho River. QUAL2Kw was also used to predict the impact of flow conditions, discharges, and tributaries on the water quality of international stretch of Minho River, essential to establish proposals for management and planning of Minho River Basin.  相似文献   

5.
Simulation models are used to aid the decision makers about water pollution control and management in river systems. However, uncertainty of model parameters affects the model predictions and hence the pollution control decision. Therefore, it often is necessary to identify the model parameters that significantly affect the model output uncertainty prior to or as a supplement to model application to water pollution control and planning problems. In this study, sensitivity analysis, as a tool for uncertainty analysis was carried out to assess the sensitivity of water quality to (a) model parameters (b) pollution abatement measures such as wastewater treatment, waste discharge and flow augmentation from upstream reservoir. In addition, sensitivity analysis for the “best practical solution” was carried out to help the decision makers in choosing an appropriate option. The Delhi stretch of the river Yamuna was considered as a case study. The QUAL2E model is used for water quality simulation. The results obtained indicate that parameters K 1 (deoxygenation constant) and K 3 (settling oxygen demand), which is the rate of biochemical decomposition of organic matter and rate of BOD removal by settling, respectively, are the most sensitive parameters for the considered river stretch. Different combinations of variations in K 1 and K 2 also revealed similar results for better understanding of inter-dependability of K 1 and K 2. Also, among the pollution abatement methods, the change (perturbation) in wastewater treatment level at primary, secondary, tertiary, and advanced has the greatest effect on the uncertainty of the simulated dissolved oxygen and biochemical oxygen demand concentrations.  相似文献   

6.
This paper exemplifies the application of U.S. Environmental Protection Agency's water quality model, QUAL2E-UNCAS in assessing the pollution risk of a tropical river. The rivers selected for study were Hindon (main river) and Kali (its tributary) flowing through Uttar Pradesh district of Northern India. The model application to the two rivers revealed poor water quality in terms of dissolved oxygen (DO), biochemical oxygen demand (BOD), and ammonia concentrations. Monte Carlo simulations were performed on two different data sets that were confirming to marked seasonal variations. The Monte Carlo simulation (MCS) derived 95 % confidence level for these parameters strengthened the fact that all point sources were exploiting the assimilative capacity of the two rivers. In order to ascertain probabilistically the risk at which two rivers were falling short of desired water quality, probability curves based on effluent standards and available water quality were prepared. On mapping the two curves, it was found that at 95 % probability, Hindon River was flowing with 53 to 100 % less of desired DO, up to 100 % more of minimum BOD, and probability with which ammonia concentration would not be more than the desired concentration was found to fall downstream. The Kali headwaters showed better quality during low river temperature but worsened downstream with up to 100 % violation in all the above observed parameters. It is expected that similar studies wherein the dependable levels with which a polluted river can be understood to fall short of desired water quality can prove to be useful in ascertaining the efficacy of effluent standards and/or follow-up of pollution control measures.  相似文献   

7.
基于QUAL2K模型的鹤壁卫河水质模拟预警研究   总被引:1,自引:0,他引:1  
水质预报预警对于防范水污染、降低水污染风险及其带来的损失、保障用水安全及水环境质量等具有重大意义。提出了一种基于QUAL2K模型的水质模拟预警方法,包括水质模拟预测、预警指数计算和警情确定,以海河流域鹤壁市卫河为例进行实证研究。研究结果表明:基于QUAL2K模型模拟精度分别为COD 97.7%、NH_3-N 98.5%,水质模拟效果较好;所选河段预警时段内COD基本处于无警和轻警2个级别,氨氮大多是巨警,浓度严重超标,是导致监测断面预警指数高的主要原因。  相似文献   

8.
Modelling can be a useful management tool because models allow the understanding of water body response to different pollution pressure scenarios which may help on the decision-making process and in prosecuting the Water Framework Directive objectives. This study aims to evaluate the usage of simple water quality models (Qual2Kw) applied to small river basins in order to better understand the response of a river to different loads of nitrogen and phosphorus. Qual2Kw model was applied to Cértima River (Portugal), a small river that ends in a shallow lake called Pateira Fermentelos and represents a very important ecosystem to the local community. Along its pathway, Cértima River has a significant enrichment in nutrients due to agriculture, livestock, domestic sewage and industrial effluents discharged into the river. In case of nitrogen, the highest loads are from domestic (44%) and diffuse (35%) sources. The main sources of phosphorous are domestic (46%), livestock (24%) and diffuse sources (20%). Cértima River is strongly enriched with nutrients, and neither nitrogen nor phosphorous is limiting the algal growth. According to the criterion of Dodds et al. (Water Res, 32(5):1455-1462, 1998), the river is classified as eutrophic. By comparing in stream measurements with Qual2Kw simulations, it can be concluded that it would be necessary to decrease the actual pollutants loads of nitrogen and phosphorous 5 and 10 times, respectively, in order to change Cértima River classification from eutrophic to mesotrophic.  相似文献   

9.
In this paper, the performance of water quality modeling is investigated in the analysis of the natural assimilative capacity (NAC) of a river system. The new data available, along with the appropriate integrated model, allow for the analysis of the NAC of the entire river. The integrated model developed here emphasized the implementation of the QUAL2E simulation model and the appropriate allocation of waste loads (optimization model) in a subtropical area. Simulations are calibrated and validated according to the data from the Water Quality and Flow Rate Monitoring Project using the QUAL2E model. On the basis of the optimal allocation model, the results of the NAC and allowable pollution loading in the Putzu River basin are discussed. The study provides a framework of the integrated model that can be used as a guideline to determine the NAC of subtropical rivers.  相似文献   

10.
In this paper limnological status of river Suswa was observed for a period of two years. A water quality Beck modified Khanna Bhutiani model (BMKB model) was developed to calculate DO (dissolved Oxygen) and BOD (biochemical oxygen demand). The model was developed to calculate DO and BOD by using DO/BOD of same place and upstream in previous season which results in Single output. This model gives the seasonal value on the basis of previously taken upstream and downstream observations/concentrations of DO and BOD. The model was calibrated and verified for the water quality data (Physico-chemical data) of samples collected from river Suswa in different seasons. The model gave good agreement between data observed by it and the data observed manually, thus substantiating the validity of the model. Only minor differences were observed in physical, chemical and heavy metals of all the four sampling stations during the course of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号