首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the previous study, Mirabilis jalapa L. had revealed the basic Cd hyperaccumulator characteristics, but the accumulation ability was not as strong as that of other known Cd hyperaccumulators. In order to improve the accumulation ability of this ornamental plant, the chelants were used to activate the Cd in soil. As a substitute, ethylene glycol bis(2-aminoethyl) tetraacetic acid (EGTA) was selected to testify whether it has better effectiveness and can bring lesser metal leaching risk than EDTA. The data showed that the growth of M. jalapa was inhibited, while the Cd concentration of the plant was significantly increased under the treatments containing EDTA or EGTA. The Cd translocation ability under the EGTA treatments was higher than that under the EDTA treatments. The available Cd resulted from the application of chelant EGTA to the contaminated soils can be limited to the top 5 cm, while the application of chelant EDTA to the contaminated soils can be limited to the top 10 cm. In a word, EGTA showed better effectiveness than EDTA in enhancing Cd phytoextraction of M. jalapa. As an ornamental plant, M. jalapa has the potential to be used for phytoextraction of Cd-contaminated soils and it can beautify the environment at the same time.  相似文献   

2.
The concentrations of Cd, Cu, Pb, and Zn in sediments, water, and different plant organs of six aquatic vascular plant species, Ceratophyllum demersum L. Echinochloa pyramidalis (Lam.) Hitchc. & Chase; Eichhornia crassipes (Mart.) Solms-Laub; Myriophyllum spicatum L.; Phragmites australis (Cav.) Trin. ex Steud; and Typha domingensis (Pers.) Poir. ex Steud, growing naturally in the Nile system (Sohag Governorate), were investigated. The aim was to define which species and which plant organs exhibit the greatest accumulation and evaluate whether these species could be usefully employed in biomonitoring and phytoremediation programs. The recorded metals in water samples were above the standard levels of both US Environmental Protection Agency and Egyptian Environmental Affairs Agency except for Pb. The concentrations of heavy metals in water, sediments, and plants possess the same trend: Zn > Cu > Pb > Cd which reflects the biomonitoring potentialities of the investigated plant species. Generally, the variation of heavy element concentrations in water and sediments in relation to site and season, as assessed by two-way repeated measured ANOVA, was significant (p < 0.05). However, insignificant variations were observed in the concentrations of Pb and Cd in sediments in relation to season and of Cu and Zn in relation to site. Results also showed that the selectivity of the heavy elements for the investigated plants varied significantly (p < 0.05) with species variation. The accumulation capability of the investigated species could be arranged according to this pattern: C. demersum > E. crassipes > M. spicatum > E. pyramidalis > T. domingensis > P. australis. On the basis of the element concentrations, roots of all the studied species contain higher concentrations of Cu and Zn than shoots while leaves usually acquire the highest concentrations of Pb. Cd concentrations among different plant organs are comparable except in M. spicatum where the highest Cd concentrations were recorded in the leaves. Our results also demonstrated that all the studied species can accumulate more than 1,450-fold the concentration of the investigated heavy elements in water rendering them of interest for use in phytoremediation studies of polluted waters. Given the absence of systematic water quality monitoring, heavy elements in plants, rather than sediments, provide a cost-effective means for assessing heavy element accumulation in aquatic systems during plant organ lifespan.  相似文献   

3.
The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala—silty loam and Pacca—clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg?1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg?1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.  相似文献   

4.
Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg?1 soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg?1soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg?1 soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.  相似文献   

5.
The major objective of this investigation was to evaluate the potential of scented geraniums, Pelargonium roseum, to uptake and accumulate heavy metals nickel (Ni), cadmium (Cd), or lead (Pb). For this, plants were grown in an artificial soil system and exposed to a range of metal concentrations over a 14-day treatment period. Then, metals from the entire biomass were extracted. The results showed that scented geranium plants accumulated in excess of 20,055 mg of Ni kg?1 dry weight (DW) of root and 10,889 mg of Ni kg?1 DW of shoot, and in excess of 86,566 mg of Pb kg?1 DW for roots and 4,416 mg of Pb kg?1 DW for shoots within 14 days. Also, the uptake and accumulation of cadmium in roots of scented geranium plants increased with the exposure at low (250, 500 mg?L?1) and medium level (750 mg?L?1) followed by a decline at the highest level (1,000 mg?L?1). The highest accumulation in roots (31,267 mg?kg?1 DW) was observed in 750 mg?L?1 cadmium treatment. In the shoots of scented geraniums, the highest amount of metal accumulation (1,957 mg?kg?1 DW) was detected at 750 and 1,000 mg?L?1 of cadmium in the culture solution. Finally, since the high concentrations of Ni or Pb accumulated in shoots of scented geranium has far exceeded 0.1 % DW and for Cd has far exceeded 0.01 % DW, P. roseum is a new hyperaccumulator species for these metals and can be used in phytoremediation industry.  相似文献   

6.
Enhancement of multiple heavy metal uptake from municipal solid waste (MSW) compost by Lolium perenne L. in a field experiment was investigated with application of EDTA. EDTA was added in solution at six rates (0–30 mmol kg???1) after 50 days of plant growth. Two weeks later, plants were harvested for the first crop and then all the turfgrasses were mowed. After another 30 days of growth, EDTA was added again at above six rates to the corresponding sites and the second crop was harvested 2 weeks later. The results showed that EDTA significantly increased heavy metal accumulation in both crops of L. perenne. For the first crop, the concentrations of Mn, Ni, Cd, and Pb in the shoots increased remarkably with increasing EDTA supply, peaked at 25 mmol kg???1 EDTA, and shoots of 0–5 cm height (shoots from medium surface to 5 cm height) had higher metal concentrations than 5–10 cm and >10 cm shoots. The highest concentration of Mn, Ni, Cd, and Pb was 2.3-, 2.3-, 2.6-, and 3.2-fold, respectively, in 0–5 cm shoots higher than control. For the second crop, the concentrations of Mn, Cu, and Pb in shoots were, in general, less than those in the first crop. However, the second crop was significantly higher (P?< 0.05) than the first crop in dry biomass, so the total amount of metals removed by the second crop was more than the first crop. In addition, EDTA significantly increased the translocation ratios of most heavy metals from roots to shoots. For the first crop, 38% of the total Zn, 51% of Cd, 49% of Pb, 60% Mn, 55% Ni, and 45% Cu taken up by the plant was translocated in the shoots of 0–5 cm height. Turfgrass would have potential for use in remediation of heavy metals in MSW compost or contaminated soils.  相似文献   

7.
The screening of hyperaccumulators is still very much needed for phytoremediation. With properties such as strong tolerance to adverse environment, fast growing and highly reproductive rate, weed species may be an ideal plant for phytoremediation. The objectives of this study were to examine the tolerance and hyperaccumulative characteristics of 24 species in 9 families to Cd, Pb, Cu and Zn by using the outdoor pot-culture experiment. In the screening experiment, only Conyza canadensis and Rorippa globosa displayed Cd-hyperaccumulative characteristics. In a further concentration gradient experiment, C. canadensis was affirmed that it is not a Cd hyperaccumulator. Only R. globosa, indicated all Cd hyperaccumulative characteristics, especially Cd concentration in its stems and leaves were higher than 100 mg/kg, the minimum Cd concentration what a Cd-hyperaccumulator should accumulate. Thus, R. globosa was further validated as a Cd-hyperaccumulator.  相似文献   

8.
With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.  相似文献   

9.
This research was conducted to search and identify spontaneously growing heavy metal-tolerant plant species that are potentially useful for phytoremediation in contaminated sediment. Five sites were selected for collection of plants growing on polluted shore (river bank) sediment of the Xiang River, China. The concentrations of Zn, Pb, Cu and Cd in plants, sediments, and grasshoppers were determined using flame atomic absorption spectrophotometer (AAS700, Perkin-Elmer, USA). Considering translocation factor and bioaccumulation factor, Rumex crispus (Polygonaceae), Rumex dentatus (Polygonaceae), and Lagopsis supina (Labiatae) could be potentially useful for phytostabilization of metals. R. crispus can be considered potentially useful for phytoextraction of Cd. In light of the biomagnification factors, grasshoppers are deconcentrators for Pb and Cd, microconcentrators for Zn and macroconcentrators for Cu to the plants, respectively. To the best of our knowledge, the present study is the first report on Zn, Pb, Cu and Cd accumulation in R. crispus and L. supina, providing a pioneer contribution to the very small volume of data available on the potential use of native plant species from contaminated sediments in phytostabilization and phytoremediation technologies.  相似文献   

10.
The objective of this study was to compare the accumulation and partitioning of cadmium (Cd) in a fibrous versus a tap root weed, Ranunculus repens and Geranium robertianum respectively. To meet this objective, we compared the accumulation by and the partitioning of Cd in R repens versus G. robertianum grown in soils spiked with 0.015 grams of Cd for a period of three weeks. The rate of Cd uptake was also compared by following the fate of 109Cd within the root, stem and leaf of the two weeds. Prior to Cd exposure, leaf and stem of control R. repens contained significantly greater amounts of Cd as compared to G. robertianum, whereas Cd concentrations in roots of the control plants for the two species were not significantly different (p > 0.05, student's t-test). Post Cd exposure the two species contained similar amounts of Cd in leaf and stem, however, roots of R. repens contained almost two-fold the amounts of Cd as compared to G. robertianum. Comparison of k (h(-1), rate of 109Cd uptake) for stem, leaf and root of the two species indicated that G. robertianum accumulated 109Cd over the first 24-48 h at a faster rate as compared to R. repens. For both species and all three organs, maximum accumulation of 109Cd occurred within the first 24-48 h. Our findings indicate that the fate of Cd within these two species is quite different with the fibrous root of R. repens serving to accumulate and store Cd whereas in G. robertianum, Cd is rapidly taken up and tends to be accumulated within its leaf.  相似文献   

11.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

12.
The metal accumulation potential of Bacopa monnieri L. was assessed under simulated laboratory conditions. This study was carried out in mixed metals (Cu, Cd, Pb, Cr, Mn) condition and repeated exposures in artificial contaminated soil. The growing shoots were planted in garden subsoil containing 3, 16, 32, 64, 160 M each of the above metals. After 8 weeks, plants were refeeded to three times higher concentrations of each metal than initially used to assess the maximum accumulating potential of the metals. The accumulation of the metals by the root and shoot was concentration and duration dependent. The metal accumulation was considerably higher in the fine root than in the shoot and showed the following order : Mn > Cr > Cu > Cd > Pb. The plants showed high tolerance to the metals as no visible phytotoxic symptom was produced after 8 weeks. However, as a result of combined metal toxicity, chlorophyll content was reduced by 62% after 12 weeks. The highest metal concentration was lethal to the plant at 16 weeks. In view of their high tolerance, the plants of B. monnieri may be considered for the amelioration of industrially-polluted wetlands experiencing regular flushing of wastewaters.  相似文献   

13.
Averrhoa carambola L., a high-biomass tropical tree, has recently been shown to be a strong accumulator of cadmium (Cd) and has great potential for Cd phytoextraction. In the present study, field studies and a controlled-environment experiment were combined to establish the extent of variation in Cd tolerance and accumulation at the cultivar level using 14 to 19 cultivars of A. carambola. The results indicated that all cultivars tested could accumulate Cd at high but different levels, and that Cd tolerance also varied greatly between these cultivars. It is confirmed that the high Cd tolerance and accumulation capacity are species-level and constitutional traits in A. carambola. However, no correlation was detected between tolerance index and accumulation of Cd in different cultivars, suggesting that the two traits are independent in this woody Cd accumulator. More importantly, cultivar Wuchuan Sweet (WCT) was shown to have the highest Cd-extraction potential; it yielded a high shoot biomass of 30 t ha(-1) in 230 d, and extracted 330 g ha(-1) Cd in the aerial tissues grown in Cd-contaminated field soil, which accounted for 12.8% of the total soil Cd in the top 20 cm of the soil profile.  相似文献   

14.
Phyllanthus niruri is a plant that is used to prevent calcium oxalate crystallisation and to block the stone formation in urolithiasis. Contaminants in the environment can be readily taken up by medicinal plants due to their ability to absorb chemicals into their tissues. If contaminated plants are ingested, they have the potential to negatively affect human and environmental health. The aim of this study was to assess contamination in the soil and the medicinal plant P. niruri by cadmium (Cd) in ceramic industrial areas of Monte Carmelo, Brazil. Soil samples and plant samples (divided in root, shoot and leaves) were collected from a contaminated monitoring site and from a rural area (which was used as a reference site for comparative purposes). The Cd concentrations of the samples were analysed with an atomic absorption spectrometer. P. niruri was found to be sensitive to soil contamination by Cd that was attributed to ceramic industrial emissions. The results revealed that Cd bioaccumulation in the roots and shoots of P. niruri was associated with a significant increase (p?<?0.05) in the concentration of active lignan compounds (phyllanthin and hypophyllanthin) in the leaves. The identification of high concentrations of Cd and active lignan compounds suggests a risk of contamination of the site and the risk of a high dose of Cd to people exposed at the site.  相似文献   

15.
In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg?1), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg?1, respectively, at the soil Cd concentration of 50 mg kg?1. Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg?1). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.  相似文献   

16.
Multifaceted issues or paradigm of sustainable development should be appropriately addressed in the discipline of environmental management. Pollution of the biosphere with toxic metals has accelerated dramatically since the beginning of the Industrial Revolution. In present review, comparative assessment of traditional chemical technologies and phytoremediation has been reviewed particularly in the context of cost-effectiveness. The potential of phytoremediation and green chemicals in heavy metals management has been described critically. Further, the review explores our work on phytoremediation as green technology during the last 6 years and hand in hand addresses the various ecological issues, benefits and constraints pertaining to heavy metal pollution of aquatic ecosystems and its phytoremediation as first case study. Second case study demonstrates the possible health implications associated with use of metal contaminated wastewater for irrigation in peri-urban areas of developing world. Our researches revealed wetland plants/macrophytes as ideal bio-system for heavy metals removal in terms of both ecology and economy, when compared with chemical treatments. However, there are several constraints or limitations in the use of aquatic plants for phytoremediation in microcosm as well as mesocosm conditions. On the basis of our past researches, an eco-sustainable model has been proposed in order to resolve the certain constraints imposed in two case studies. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation is still in embryonic stage and needs more attention in gene manipulation area. Moreover, harvesting and recycling tools needs more extensive research. A multidisciplinary research effort that integrates the work of natural sciences, environmental engineers and policy makers is essential for greater success of green technologies as a potent tool of heavy metals management.  相似文献   

17.
Arsenic (As) accumulation in rice owing to uptake from the soil is a critical human health issue. Here, we studied the chemical properties of As-treated soils, growth inhibition patterns of As-stressed rice plants, changes in the As content of soil and soil solutions, and the relationship between As accumulation and As transfer factor from the soil to the rice organs. Rice plants were cultivated in a greenhouse under four concentrations of As: 0 (control), 25, 50, and 75 mg kg?1. A significant positive correlation was found between available P2O5 and exchangeable K and between As concentration and available P2O5 or exchangeable K. The As concentration for 50% shoot growth inhibition was 50 mg kg?1. As levels in roots and shoots were positively correlated with the growth stages of rice. The transfer factor (TF)root/soil increased with As concentration at the tillering stage but decreased at the heading stage. TFroot/soil and TFshoot/soil were higher at the heading stage than at the tillering stage. As accumulation in the 25 mg kg?1 treatment was higher during the heading stage, whereas no difference was found at the tillering stage. As accumulation was related to plant biomass and soil As concentration. We found that As accumulation was greater at As concentrations that allowed for plant growth and development. Thus, species-specific threshold concentrations must be determined based on As phytotoxicity for the phytoremediation of As-contaminated soils. Hence, developing practical approaches for managing safe crop production in farmlands with an As contamination of 25 mg kg?1 or less is necessary.  相似文献   

18.
洪泽湖溧河洼水生植物体内重金属调查   总被引:1,自引:0,他引:1  
对洪泽湖溧河洼区域的水生植物进行了Cu、Zn、Pb、Cr和Cd等重金属元素的污染调查与监测分析,结果表明:水生植物对重金属元素的吸收与积累反映了环境中的重金属污染水平,不同水生植物对各种重金属元素的吸收富集状况具有相对一致性,即Zn>Cu>Cr>Pb>Cd。水生植物对各种重金属元素的平均富集系数大小顺序为:Cd>Cu>Zn>Cr>Pb,这与各元素迁移性强弱的顺序也是相一致的,Cd、Cu、Zn等各元素较易为植物所吸收,而Pb的移动性较差。大部分水生植物根部的重金属含量比茎叶部分高。研究表明:可以从中筛选出具有高富集作用的植物,作为修复水体或土壤重金属污染的实验植物,为植物修复作用的研究提供参考。  相似文献   

19.
The potential of Wolffia globosa, a profusely occurring rootless duckweed, was evaluated as an indicator of metal pollution in the water bodies. Plants of W. globosa were cultured in 3% Hoagland's nutrient medium which was supplemented with 0.05, 0.1, 1.0 and 2.0 mg/L of Cr and Cd. Plants showed substantial accumulation of both the metals at lowest concentrations. For example, at 0.05 ppm, the concentration factor (Cf) value for Cr was significantly higher (5616) than for Cd (1018). A high level of tolerance was shown by the plants to both Cr and Cd. The results show that the plants are sensitive to the variations in metal concentration and are capable of high metal enrichment at very low ambient concentration of the metals. This information may be useful for detecting metals in the water.NBRI Research Publication No. 401 (N.S.)  相似文献   

20.
Use of specific plant species in remediation of heavy metal-contaminated soil and water was a promising eco-friendly technology. The present study indicated the possibilities of phytoremediation of metal-contaminated (namely Ca, Cr, Mn, Fe, Cu, Zn, and Pb) soil by using plant species important for floriculture of East Calcutta Wetlands, a Ramsar site at the eastern fringe of Calcutta city. Plant species like sunflower (Helianthus annuus), marigold (Tagetes patula), and cock's comb (Celocia cristata) grew on soil contaminated by industrial sludge and irrigated regularly with wastewater accumulated different metals in different plant parts in varied concentrations. Pot culture study in the laboratory setup was also done to ascertain the efficiency of these plants for ameliorating contaminated soil. It was found that general accumulation patterns of metals concerned in different plant parts were root > leaf > stem > flower. This work indicated the importance of cultivation of economically important, non-edible, ornamental plant species as an alternative cost-effective practice to remediate heavily contaminated farmlands of East Calcutta Wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号