首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Open precipitation and throughfall was collected at a Norway spruce stand in Finland using funnel-type collectors and at a black spruce stand in Canada using trough-type collectors. The presence or absence of a rim on the funnel, funnel diameter (9, 14 and 20 cm) and length of sampling period (1, 2 and 4 weeks) on monthly values were evaluated at the Norway spruce stand, and the number of collectors required for defined levels of accuracy and precision of throughfall loads to be reached and the influence of the spatial arrangement of collectors on solute concentrations was studied at both stands. The presence of a rim had no significant effect on open precipitation and throughfall amounts, but did on throughfall DOC, Ca2+, Mg2+, K+, Na+ and Cl ion loads. Deposition loads increased with decreasing funnel diameter; for open precipitation, this was due to increased catch efficiency while for throughfall the increase was attributed to canopy interaction and leaching of litter trapped in the collectors. Calculated monthly H+ loads decreased and those for all other constituents increased with collection period length. Using 15 collectors at the Norway spruce stand would allow throughfall loads to be determined to within 20% of the true mean weekly value with a confidence level of 95% for most solute, but not for NH4 +–N, NO3 –N, Mg2+ and SO4 2−-S. Using 15 trough collectors, the same confidence level at the more heterogeneous black spruce stand would only be achieved for H+, Cl, DOC and SO4 2−-S loads. In both stands, using either random or systematic placements of throughfall collectors gave similar results.  相似文献   

2.
Aerosol samples for dry deposition and total suspend particulates (TSP) were collected from August to November of 2003 in central Taiwan. Ion chromatography was used to analyze the related water-soluble ionic species (Cl, NO3 , SO4 2−, Na+, NH4 +, K+, Mg2+ and Ca2+). The results obtained in this study indicated that the ambient air particulate mass concentrations in the daytime period (averaged 975.4 μg m−3) were higher than the nighttime period (averaged 542.1 μg m−3). And the daytime dry deposition fluxes (averaged 58.12 μg m−2 sec−1) were about 2.2 times as that of nighttime dry deposition fluxes (averaged 26.54 μg m−2 sec−1) of the downward dry deposition. The average values downward and upward of dry deposition fluxes for the weekend period were almost higher than the weekday period for either daytime or nighttime period. Furthermore, the average daytime dry deposition fluxes (averaged 26.37 μg m−2 sec−1) were also about 2.3 times as that of nighttime dry deposition fluxes (averaged 11.52 μg m−2 sec−1). Moreover, the results also indicate that SO4 2− and Ca2+ have higher average composition for total suspended particulates in the daytime period while Ca2+, SO4 2−, and Na+ have the higher average composition for total suspends particulates in the nighttime period.  相似文献   

3.
Atmospheric deposition of major and trace elements in Amman, Jordan   总被引:1,自引:0,他引:1  
Wet and dry deposition samples were collected in the capital of Jordan, Amman. Concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V, Zn, Fe, Sr, Mg2+, Ca2+, Na+, K+, Cl, NO3 and SO4 2−, along with pH were determined in collected samples. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4 2− were among the highest. High Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust. However, high SO4 2− concentrations were attributed to the influence of both anthropogenic and natural sources. Except for Cl, NO3 , SO4 2− and Cu, monthly dry deposition fluxes of all measured species were higher than wet deposition fluxes. The annual wet deposition fluxes of trace metals were much lower than those reported for other urban areas worldwide.  相似文献   

4.
Throughfall and open field bulk precipitation were measured at three coniferous sites during 1995–2002 in the framework of ICP Integrated Monitoring and at five coniferous sites during 1996–2002 in the framework of ICP Forests (Level II). The coniferous canopies acted as a sink for nitrate and ammonium and as a source for base cations: Ca2+, Mg2+ and K+. The estimated share of SO4–S dry deposition from total deposition was 1.5–4 times higher for dormant period compared to growing period. During the study period average annual throughfall and bulk deposition of SO4–S decreased significantly, 2.8 and 2.3 times, respectively. Throughfall enrichment with base cations increased in the order Mg < Na < Ca < K. Using Na as a tracer ion, average dry deposition and canopy leaching were calculated. Leaching was the dominant process for TF enrichment by potassium. Leaching of base cations occurred during growing as well as dormant period. The calculated internal flux of Ca2+ and Mg2+ varied in the range of 0.6–2.0 and 0.6–1.2 kg ha−1 per year in spruce and pine stands, respectively. The internal circulation of K+ was significantly higher (8.9–10.9 kg ha−1 per year) in spruce stands than in pine stands (2.7–4.4 kg ha−1 per year).  相似文献   

5.
Fourteen (14) characters from six (6) water samples collected from springs, ponds, and streams located in Lower Cretaceous sedimentary area of Afikpo Basin have been analyzed. These include pH, turbidity, conductivity, total dissolved solid, hardness, Fe2+, Ca2+, Mg2+, K+, NO3 ?, Cl?, SO4 2?, and Na+. These sediments, which are Turonian and Coniacian in age, are subdivided into two by a basic rock dyke. Results of the analyses show clearly that the Turonian sediments, intruded by dolerite, have net Fe2+, HCO3 ?, Ca2+, Mg2+, Mn2+, Cl?, and SO4 2? concentration while those from the younger Coniacian sediment have net higher amounts of K+, Na+, and Mn2+. The overriding mafic minerals in the basic intrusive rock possibly led to higher leaching into ground water system near it. On the other hand, the presence of feldsparthic to kaolinitic sands of the younger Coniacian units led to higher K+ and Na+ matter in the water from these zones. The formations dip away from the older sediments. Concentrations of these characters are within acceptable drinking water standards by World Health Organization but noticeable anomalous zones for Fe2+, Mg2+, and Ca2+ are zones of basic rock suites. Areas with greater Na+ and K+ are traceable to sandy units. It is thus concluded that more analysis of surface, subsurface, and pond water samples can be utilized for minerals search and geological mapping. At this stage, it forms a veritable reconnaissance tool.  相似文献   

6.
Dry deposition samples collected during 1999–2001 at a South China site using surrogate surfaces were analyzed by capillary electrophoresis. Collector surface properties played important roles to the dry deposition. The deposition velocities for various species ranged from 0.02 to 1.69 cm s???1, in general agreement with literature values. More than 90% of Ca2?+? was deposited by sedimentation and its comparable values of dry or wet removal residence times imply that dry deposition is an important atmospheric removal process for the ubiquitous crustal species in South China, compared with precipitation scavenging. Relatively good agreement was found when the species deposition velocities were modeled based on up-to-date knowledge of particle dry deposition. The total depositions for anthropogenic and crustal species in northern China are likely to be much higher than those in the south, including our site where the fluxes of the acidic species SO4 2??? and NO3 ??? were 4.4 and 2.2 g m???2 year???1, respectively. The sum of dry deposition for cations Na?+?, Ca2?+?, Mg2?+?, and K?+? contributes 44% of the total flux, which is equivalent to the value estimated in Europe.  相似文献   

7.
Water Quality Assessment of Osun River: Studies on Inorganic Nutrients   总被引:5,自引:0,他引:5  
The present investigation provides data of some ions, namely Na+, Ca2+, NH4 +,Cl-, NO3 -,CN- and PO4 3- on water samples of river Osun,selected rivers in the region and groundwaters. The pH,temperature, electrical conductivity (EC), total dissolvedsolids (TDS), total hardness (TH) and total carbon (IV) oxide(TCO2) have also been determined to asses the chemicalstatus and pollution levels of these water sources. The highervalues of certain parameters with respect to the acceptablestandard limits for drinking water indicate the pollution inboth groundwater and river water samples of the study area, and make the waters unsuitable for various applications. Thehigh pollution river water source showed higher levels ofphosphate, nitrate and ammonium ions (P < 0.05). There is nosignificant difference (P < 0.05) between the meanconcentrations of other inorganic nutrients in the high and lowpollution water source types. The correlation coefficientbetween quality parameter pairs of river water and groundwatersamples are determined and the significance of these parametersin both types of water sources are discussed.  相似文献   

8.
Precipitation chemistry measurementsobtained by the Canadian Air and PrecipitationMonitoring Network (CAPMoN) and the U.S. NationalAtmospheric Deposition Program/National Trends Network(NADP/NTN) have been examined using more than 7 yrof collocated data from two sites, namely, Sutton,Quebec, Canada and State College, Pennsylvania, U.S.A.In the case of the CAPMoN data, weeklyprecipitation-weighted mean concentrations, totalsample depths and total standard gauge depths werecomputed from daily data and compared to thecorresponding weekly sampling data of the NADP/NTNnetwork. Seasonal and annual precipitation-weightedmean concentrations and deposition values were alsocomputed for both networks and compared. Statisticallysignificant between-network biases were found to existin the weekly results for most of the measuredvariables, particularly standard gauge depth, sampledepth, pH, H+, NO3 -,NH4 +,Na+; the NADP/NTN values were consistently lowerthan those of CAPMoN with the exception of pH andNa+. The magnitude of the biases was less than35% of the median CAPMoN weekly value for the 7 yr. For most of the measured parameters, thevariability of the between-network differencesrepresented less than 20% of the median CAPMoN weeklyvalue. Both the between-network biases andvariabilities were functions of several physicalparameters, the most dominant being the sample depthand the ionic concentration. For seasonal and annualdeposition values, statistically significantbetween-network biases were found for H+,SO4 2-, NO3 -,Ca2+,NH4 + for both periods; for Mg2+ andK+ for seasonal data; and Cl- for yearlydata, with the NADP/NTN deposition values being lowerthan those of CAPMoN. The relative biases ranged from7 to 37%. Part of the between-network bias in thedeposition estimates was directly attributable to astrong bias in the standard gauge depths of the two networks.  相似文献   

9.
The Yanqi Basin in Xinjiang Province is an important agricultural area with a high population density. The extensive agricultural activities in the Yanqi Basin started in the 1950s with flood irrigation techniques. Since then, the groundwater table was raised because of the absence of an efficient drainage system. This obstacle is a crucial factor that restricts sustainable socioeconomic development. Hydrochemical investigations were conducted in the Yanqi Basin, Northwestern China, to determine the chemical composition of groundwater. Sixty groundwater samples were collected from different wells to monitor the water chemistry of various ions. The results of the chemical analysis indicate that the groundwater in the area is generally neutral to slightly alkaline and predominantly contains Na+ and Ca2+ cations as well as HCO3 ? and SO4 2+ anions. High positive correlations between HCO3 ?–Mg2+ + Ca2+, SO 4 2?–Mg2+, SO4 2?–Na+ + K+, and Cl?–Na+ + K+ were obtained. The total dissolved solids (TDS) mainly depend on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Ca2+, Mg2+, and Na+ + K+. The dominant hydrochemical facies for groundwater are Ca2+–Mg2+–HCO3 ?, Mg2+–Ca2+–SO4 2?–Cl?, Na+–K+–Cl?–SO4 2?, and Na+–K+–Mg2+–Cl?–HCO3 ? types. The hydrochemical processes are the main factors that determine the water quality of the groundwater system. These processes include silicate mineral weathering, dissolution, ion exchange, and, to a lesser extent, evaporation, which seem to be more pronounced downgradient of the flow system. The saturation index (SI), which is calculated according to the ionic ratio plot, indicates that the gypsum–halite dissolution reactions occur during a certain degree of rock weathering. SI also indicates that evaporation is the dominant factor that determines the major ionic composition in the study area. The assessment results of the water samples using various methods indicate that the groundwater in the study area is generally hard, fresh to brackish, high to very high saline, and low alkaline in nature. The high total hardness and TDS of the groundwater in several places indicate the unsuitability of the groundwater for drinking and irrigation. These areas require particular attention, particularly in the construction of adequate drainage as well as in the introduction of an alternative salt tolerance cropping.  相似文献   

10.
Different collector types, sample workup procedures and analysis methods to measure the deposition of polycyclic aromatic hydrocarbons (PAH) were tested and compared. Whilst sample workup and analysis methods did not influence the results of PAH deposition measurements, using different collector types changed the measured deposition rates of PAH significantly. The results obtained with a funnel-bottle collector showed the highest deposition rates and a low measurement uncertainty. The deposition rates obtained with the wet-only collectors were the lowest at industrial sites and under dry weather conditions. For the open-jar collectors the measurement uncertainty was high. Only at an industrial site with extremely high PAH deposition rates the results of open-jar collectors were comparable to those obtained with funnel-bottle collectors. Thus, if bulk deposition of PAH has to be measured, funnel-bottle combinations are proved to be the collectors of choice. These collectors were the only ones always fulfilling the requirements of European legislation.  相似文献   

11.
Wet atmospheric samples were collected from different locations in the southern region of Jordan during a 5-year period (October 2006 to May 2011). All samples were analyzed for pH, EC, major ions (Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, NO3 ?, and SO4 2?), and trace metals (Fe2+, Al3+,Cu2+, Pb2+, and Zn2+). The highest ion concentrations were observed during the beginning of the rainfall events because large amounts of dust accumulated in the atmosphere during dry periods and were scavenged by rain. The rainwater in the study area is characterized by low salinity and neutral pH. The major ions found in rainwater followed the order of HCO3?>?Cl??>?SO4 2? and Ca2+?>?Na+ > Mg2+ > NH4 + > K+. Trace metals were identified to be of anthropogenic origin resulting from cement and phosphate mining activities located within the investigated area and from heating activities during the cold period of the year (January to April). The wet precipitation chemistry was analyzed using factor component analysis for possible sources of the measured species. Factor analysis (principal component analysis) was used to assess the relationships between the concentrations of the studied ions and their sources. Factor 1 represents the contribution of ions from local anthropogenic activities, factor 2 represents the contribution of ions from natural sources, and factor 3 suggests biomass burning and anthropogenic source. Overall, the results revealed that rainwater chemistry is strongly influenced by local anthropogenic sources rather than natural and marine sources, which is in a good agreement with the results obtained by other studies conducted in similar sites around the world.  相似文献   

12.
In this study, chemical composition of the rain water in Mugla was investigated from February to April 2002. Rain water samples were obtained from Mugla, a small city in south western Turkey. The Yatagan Power Plant is located 30 km northwest of Mugla city. The values of pH and the concentrations of major ions (Ca2+, Na+, K+, SO4 2−, NO3 , NH4 +) in the rainwater samples were analyzed. The pH varied from 4.5 to 7.7 with an average of 6.9 which was in alkaline range considering 5.6 as the neutral pH of cloud water with atmospheric CO2 equilibrium. In the total 30 rain events, only two events were observed in acidic range (< 5.6) which occurred after continuous rains. The equivalent concentration of components followed the order: Ca2+ > SO4 2− > NH4 + > NO3 > Na+ > K+ > H+. The volume-weighted mean (VWM) of the measured ionic sum is 371.62 μeq/l. The ratio of between sum cations and sum anions (∑cations /∑ anions) is 1.52 μeq/l. The alkaline components (Ca2+, Na+, K+) contribute 52%, NH4 + 8%, whereas, the contribution from the acidic components is relatively small (40%). The low concentrations of H+ found in rainwater samples from Mugla suggest that an important portion of H2SO4 and HNO3 have been neutralized by alkaline particles in the atmosphere. The dust-rich local and surrounding limestone environment might have caused the high concentration of Ca2+ in Mugla area. The relatively high concentration of NH4 + observed at Mugla is suspected to be due to surrounding agricultural. The results obtained in this study are compared with those other studies conducted at various places in the world.  相似文献   

13.
Fog water samples were collected in the months of December and January during 1998–2000 at Agra, India. The samples were analyzed for pH, major anions (F, Cl, SO4 2−, NO3 , HCOO and CH3COO), major cations (Ca2+, Mg2+, Na+ and K+) and NH4 + using ion chromatography, ICP-AES and spectrophotometer methods, respectively. pH of fog water samples ranged between 7.0 and 7.6 with a volume weighted mean of 7.2, indicating its alkaline characteristic. NH4 + contributed 40%, SO4 2− and NO3 accounted for 28%, while Ca2+, Mg2+, Na+ and K+ accounted for 16% of the total ionic concentration. The ratios of Mg2+/Ca2+ and Na+/Ca2+ in fog water indicates that 50–75% of fog water samples correspond to the respective ratios in local soil. Significant correlation between Ca2+, Mg2+, Na+ and K+ suggests their soil origin. The order of neutralization, NH4 + (1.4) > Ca2+ (0.28) > Mg2+ (0.12), indicates that NH4 + is the major neutralizing species. Fog water and atmospheric alkalinity were also computed and were found to be 873 and 903 neqm−3, respectively. Both of these values are higher than values reported from temperate sites and thus indicate that at the present level of pollutants, there is no risk of acid fog problem. The study also shows that the alkaline nature of fog water is due to dissolution of ammonia gas and partly due to interaction of fog water with soil derived aerosols.  相似文献   

14.
Occurrence of Acid Rain over Delhi   总被引:1,自引:0,他引:1  
Precipitation samples were collected as wet-fall only andprimarily on event basis in Delhi during the monsoon period of1995. Concentrations of major anions (SO4 2-,NO3 - and Cl-) andcations (Ca2+, Mg2+,Na+ and K+) were determined. The pH of the rain waterwas found to be more than 5.6, showing alkalinity during theearly phase of monsoon, but during the late phase of monsoon pHtendency was towards acidity due to lack of proper neutralizationof acidic ions. Neutralization is not only due to the localprocess but also due to the pre-monsoon Andhi which bringsSuspended Particulate Matter (SPM) containing Ca2+,Mg2+, Na+ and K+ as well as the local emission ofNH3. In the late monsoon the concentration of cations getsreduced because of heavy rainfall and relatively unfavourablecondition for their transport from the adjoining areas, whereasthe anion concentrations remain unchanged owing to theircontinuous emission.  相似文献   

15.
团簇离子源的发明和使用,使飞行时间二次离子质谱(TOF-SIMS)法成为材料表面化学分析越来越重要的手段,TOF-SIMS法的主要测试功能包括表层质谱、化学成像及深度剖析3种。采用TOF-SIMS法对一次污染过程中的大气细颗粒物(PM2.5)的表层进行检测,得到了PM2.5表面成分的质谱及成像信息。结果表明:PM2.5表层存在多种金属离子,通过扫描电子显微镜能谱仪的形貌与飞行时间二次离子质谱仪的成像亮度分析可知,K+、Na+、Mg2+响应强度相对较强,含量较高;通过原子吸收光谱仪进行金属离子定量可知,2018年11月4日和12月24日的K+、Na+、Mg2+的平均质量分别为1.809 5、0.443 8、1.526 2 mg;从形态分布上看,PM2.5表面烟尘集合体含量较多,其次为燃煤飞灰、矿物颗粒和超细未知颗粒;PM2.5表层的有机物离子CxHy片段也较多,经过m/z的测试数据进一步确定,表明颗粒物表层含有大量的脂肪烃和芳香烃;除此之外,还存在含N、O、S等的有机物和无机物。  相似文献   

16.
Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ?). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.  相似文献   

17.
The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO $_{3}^-$ , Cl?, HCO $_{3}^-$ , SO $_{4}^{2-}$ , Na+, K+, Ca2+, and Mg2+). Adjusted R 2 values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg2+ was omitted. The more common R 2, ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg2+ was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca2+ and HCO $_{3}^-$ are suggested.  相似文献   

18.
经过多年的大气污染防治,我国空气质量有了大幅改善,但重污染过程仍有发生。对2018—2021年徐州市3种不同类型颗粒物重污染过程的污染特征、演变趋势、PM2.5组分特征和相关性及污染成因分析结果表明:在不同类型的重污染过程中,二次无机离子NO3-、SO42-、NH4+在PM2.5中的占比均是最高。在累积型重污染期间,NO3-、SO42-、NH4+分别增长144%、142%、183%,二次无机离子对PM2.5的增长贡献较大。结合相关性分析及SOR、NOR值发现,硝酸盐和硫酸盐的二次生成作用显著。在沙尘型重污染期间,结合雷达监测结果及后向轨迹图可以看出,沙尘沉降至高空与近地面污染物叠加造成颗粒物高值。化学组分中Ca2+、Mg2+浓度对PM2.5浓度的影响最大,二次生成和转化对其影响较小。在烟花燃放型重污染期间,和烟花爆竹有关的K+、Mg2+、Cl-离子较污染前分别上升1 112%、2 058%、和239%,对污染过程影响显著。  相似文献   

19.
Groundwater samples are collected from 30 observation wells in the study area to analyze the hydrochemical quality for determining the seawater encroachment in the part of Central Godavari Delta, Bay of Bengal, India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, an integrated investigation coupled with multivariate statistical analysis and hydrochemical methods are used to identify and interpret the groundwater chemistry of the aquifer system. The major land use is irrigated agriculture and aquaculture in the study area. The ground waters affected by the seawater intrusion featured high levels of sodium (Na+), chloride (Ca+), and TDS, which are the simplest common indicators for seawater influence. The elevated levels of NO3–N at some monitoring wells indicate nitrate pollution of groundwater due to anthropogenic origin such as septic effluents or chemical fertilizers. Besides the major chemical compositions, it was also demonstrated that ionic ratios would be useful to delineate seawater intrusion and they include Na+/Ca2+, Mg2+/Ca2+, SO4 2?/Ca2+, Na+/(Na+?+?Cl?), and Ca?/sum of anions. This paper demonstrates the variations in hydrochemical quality of groundwater and its evolution processes in two different seasons in the coastal aquifer alluvial settings  相似文献   

20.
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na+) and potassium (K+) and anions such as bicarbonate (HCO3 ?) and chloride (Cl?) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca2+), magnesium (Mg2+), sulfate (SO4 2?), nitrate (NO3 ?), and fluoride (F?) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca2+-Mg2+-Cl?-SO4 2?, Ca2+-Mg2+-HCO3 ? and Na+-K+-Cl?-SO4 2? types during the post-monsoon period and Ca2+-Mg2+-Cl?-SO4 2?, Na+-K+-Cl?-SO4 2? and Ca2+-Mg2+-HCO3 ? types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46 % of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号