首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Various aquatic plant species are known to accumulate heavy metals through the process of bioaccumulation. World’s most troublesome aquatic weed water hyacinth (Eichhornia crassipes) has been studied for its tendency to bio-accumulate and bio-magnify the heavy metal contaminants present in water bodies. The chemical investigation of plant parts has shown that it accumulates heavy metals like lead (Pb), chromium (Cr), zinc (Zn), manganese (Mn) and copper (Cu) to a large extent. Of all the heavy metals studied Pb, Zn and Mn tend to show greater affinity towards bioaccumulation. The higher concentration of metal in the aquatic weed signifies the biomagnification that lead to filtration of metallic ions from polluted water. The concept that E. crassipes can be used as a natural aquatic treatment system in the uptake of heavy metals is explored.  相似文献   

2.
River Yamuna, like most of the major rivers of India, has become increasingly polluted over the years from both point and non-point sources, particularly in the urban sectors such as Delhi. Field studies, conducted in January, 1994 have investigated the impact of wastewater discharges from four major drains (Najafgarh, Power House, Barapula, Kalkaji) on the overbanks, floodplains and Eichhornia in River Yamuna in Delhi, with particular reference to elemental contamination. It is concluded that except for Cd and Co, overall mean soil concentrations along the full stretch of the river in Delhi are within the world background levels of uncontaminated soils. However, the wastewater discharges from the drains, with the exception of Barapula drain, generally increase the elemental concentrations of overbank soils downstream of the discharges. Eichhornia plants growing along the banks receiving wastewaters from the Najafgarh and Barapula drains are unhealthy and reduced in population which can be attributed to a combination of alkaline pH of the growth medium, metal toxicity and high BOD at the site receiving effluents from the Najafgarh drain, and alkaline pH, metal toxicity and the turbid conditions of water with fly ash particle deposition on the plant surfaces at the site receiving effluents from the Barapula drain. Generally, considering the entire stretch of the river in Delhi, the roots of these plants growing on the overbank soils are found to be accumulators of all elements except Co, Al and Fe, with Co uptake being minimal. There are marked differences in elemental uptake of the water hyacinths growing on the overbanks and floodplains of the river.  相似文献   

3.
The ecological and economic impacts associated with invasive species are of critical concern to land managers. The ability to map the extent and severity of invasions would be a valuable contribution to management decisions relating to control and monitoring efforts. We investigated the use of hyperspectral imagery for mapping invasive aquatic plant species in the Sacramento-San Joaquin Delta in the Central Valley of California, at two spatial scales. Sixty-four flightlines of HyMap hyperspectral imagery were acquired over the study region covering an area of 2,139 km2 and field work was conducted to acquire GPS locations of target invasive species. We used spectral mixture analysis to classify two target invasive species; Brazilian waterweed (Egeria densa), a submerged invasive, and water hyacinth (Eichhornia crassipes), a floating emergent invasive. At the relatively fine spatial scale for five sites within the Delta (average size 51 ha) average classification accuracies were 93% for Brazilian waterweed and 73% for water hyacinth. However, at the coarser, Delta-wide scale (177,000 ha) these accuracy results were 29% for Brazilian waterweed and 65% for water hyacinth. The difference in accuracy is likely accounted for by the broad range in water turbidity and tide heights encountered across the Delta. These findings illustrate that hyperspectral imagery is a promising tool for discriminating target invasive species within the Sacramento-San Joaquin Delta waterways although more work is needed to develop classification tools that function under changing environmental conditions.  相似文献   

4.
The effects of air pollution on plants downwind of a fertilizer factory at Udaipur, India, were studied using three woody perennials. Seedlings of these species including a shrub (Carissa carandas L.), a leguminous avenue tree (Cassia fistula L.) and a fruit tree (Psidium guajava L.) were grown in earthen pots at different study sites receiving varying levels of air pollution input. Changes in plant growth, morphological characteristics, photosynthetic pigment, ascorbic acid, N and S contents and in dry matter allocation were considered in relation to the status of ambient air quality. Observations with these parameters have indicated that the ambient air around the factory contained pollutants at phytotoxic levels. Plant height, basal diameter, conopy area, leaf area and chlorophyll, ascorbic acid and foliar-N concentrations decreased with increasing pollution load. However, foliar-S increased slightly at polluted sites. Air pollution load around the factory have also altered the biomass allocation. Root:shoot ratios increased in C. fistula and P. guajava at polluted sites. In contrast, for C. carandas the above ground parts, where foliage assumed predominance showed precedence over the root growth. This species responded characteristically to air pollution stress by allocating more of its photosynthate towards leaf production and shoot growth.  相似文献   

5.
Foliar Cd and Zn concentrations of hybrid poplars commonlyplanted on sediment-derived soils were assessed in field circumstances. Selected sites covered a range of soil types andplantation characteristics. Reference data for foliar concentrations were established from samples taken in a tree-nursery. Even in the reference situation a large variationin foliar Cd and Zn concentrations was observed, with relative standard deviations in the order of 15%. Foliar concentrations of Cd and Zn in poplars growing on sediment-derived soils increased during the growing season. The accumulation rate was markedly higher on polluted sediment-derived soils than in thereference situation. Poplars grown on polluted sedimentderived soils showed elevated and deviating foliar Cd and Znconcentrations (>7.5 mg Cd kg-1 DW and 320 mg Zn kg-1 DW). A thin unpolluted covering layer did not influence foliarconcentrations. Regardless of site characteristics, poplarage, species or clone, a significant positive relation wasfound between soil and foliar concentration for Zn and to alesser extent for Cd. Bioconcentration factors for Cd and Znwere higher than one in baseline situations, but mostly lowerthan one on polluted sediment-derived soils. Cd:Zn ratio wason the average twice as high as in the soil. Leaf beetlesshowed normal body concentrations for Zn, but higher Cdconcentrations than in reference situations. BCFs were lowerthan one on sediment-derived soils. Foliar results indicateda possible threat in long-term habitat development of poplarplantations. This conclusion was confirmed by the significanthigher Cd concentrations in leaf beetles grown on poplarswith deviant foliar concentrations. However, litterdecomposition rates were generally evaluated as normal.  相似文献   

6.
The concentration of heavy metals including Pb, Cu, Zn, Cd, Ni and Fe in different parts of Rosmarinus officinalis medicinal plant grown in Jordan were evaluated. Medicinal plant samples and soil samples were collected from three different zones in Jordan (Irbid, Al-Mafraq and Ma’an). Samples were analyzed by atomic absorption spectrometry (AAS) after chemical treatments using acid digestion procedures. Heavy metal levels in washed and unwashed in each part of R. officinalis were analyzed and compared statistically. Results show that concentrations of investigated heavy metals were varied from plant part to another part of R. officinalis. For example, Pb, Zn, Cu and Cd in most parts of R. officinalis in the three zones were concentrated in the following order: flowers, leaves, stems, whereas Pb, Ni and Fe were concentrated in order as follows: leaves, flowers and stems. Heavy metal concentrations in soil samples was evaluated and correlated with their levels in R. officinalis. Two standard reference materials of plant (SRM 1790a; spinach leaves and CRM 281; rye grass) and one standard reference materials of soil (GBW 07406) were examined to validate the method used. Results show that high recoveries were obtained.  相似文献   

7.
Cadmium accumulation and its toxicity in relation tochlorophyll, protein, cysteine contents and in vivo nitrate reductaseactivity were studied under controlled conditions in Hydrillaverticillata, a submerged commonly occurring macrophyte. Plants weresubjected to six different concentrations of Cd ranging from 1.0 to 25.0 µM for 24, 48, 72 and 168 h. Tissue Cd concentration was maximum (13.71 µmoles/g dw) at 25 µM background concentration. At this concentration, a decrease of approximately 79 and 72% was found in chlorophyll and protein content. In vivo nitrate reductase activity was stimulated at 1.0 µM; however, the activity gradually declined beyond this concentration. Exposure to various cadmium concentrations resulted in an increase in cysteine content of the plant.  相似文献   

8.
Cadmium and lead were determined in different tissues (muscle,gill, stomach, intestine, liver, vertebral column and scales) of Tilapia nilotica from the High Dam Lake, Aswan (Egypt) to assess the lake water pollution with those toxic metals. Fish samples were chosen from different ages and weights to be analyzed along with samples of the aquatic plant(Najas armeta), sediment and lake water.The results showed that cadmium and lead concentrations were higher in fish scales and vertebral column than in the other parts of the fish. Cadmium and lead levels in High Dam lake water and fish (Tilapia nilotica) were a result of the pollution which uptakes from aquatic plants, sediments andgasoline containing lead that leaks from fishery boats. Tilapia nilotica fish was used as a good bio-assay indicator for the lake pollution with cadmium and lead. The fish musclesin this study were in the safety baseline levels for man consumption.  相似文献   

9.
铅锌尾矿库周边土壤重金属污染特征及环境风险   总被引:4,自引:0,他引:4  
以尾矿库周边土壤为研究对象,用改进BCR法探讨Zn、Pb、Ni、Cu、Cr形态特征,用污染因子Cf和风险评价代码RAC评估环境风险。结果表明:Pb污染最重,总量是区域背景值的2倍多,污染剖面各重金属总量垂向分布均匀,污染已扩散至1 m深;5种金属均主要以残渣态存在,有效态、可交换态Pb质量占比均高于其他4种金属,与表层土壤相比,中、下层污染剖面各金属以更稳定的形态存在;Zn、Ni、Cu、Cr在表层或污染剖面土壤均存在低风险,部分点位Pb存在中度风险。  相似文献   

10.
Levels of arsenic, cadmium, chromium, copper, lead, manganese, selenium, and strontium88 were examined in heart, kidney, muscle, spleen and liver of raccoons (Procyon lotor) from four areas on the Department of Energy's Savannah River Site (SRS), including near a former reactor cooling reservoir and a coal ash basin, and from public hunting areas within 15 km of the site. Mercury is mentioned briefly because it is discussed more fully in another paper. We test the hypotheses that there are no differences in metal levels between raccoons on SRS and off the SRS (off-site), and among different locations on the SRS. Although raccoons collected off-site had significantly lower levels of mercury and selenium in both the liver and kidney, there were few consistencies otherwise. There were significantly higher levels of cadmium in liver of on-site compared to off-site raccoons, and significantly higher levels of chromium and strontium88 in kidney of on-site compared to off-site raccoons. Copper and manganese were highest in the liver; cadmium, lead, mercury and selenium were highest in the liver and kidney; chromium was highest in the spleen and muscle; arsenic was highest in the heart, and strontium88 was slightly higher in the kidney than other organs. Where there were significant differences on site, chromium, manganese were highest in raccoon tissues from Steel Creek; arsenic, lead and selenium were highest in the Ash Basin; cadmium was highest at Upper Three Runs; and strontium88 was highest at Upper Three Runs and Steel Creek. The patterns were far from consistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号