首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
论述了室内空气污染的主要原因。主要污染物及其危害。并对室内空气污染现状进行了调查。结果显示住宅中甲醛超标率在33.3%-100%之间,甲醛最高超标10.9倍;总挥发性有机物(TVOC)超标率在55.6%-75.0%之间,最高超标24.0倍;氨超标率在33.3%-41.7%之间,最高超标5.1倍;氡未见超标,同时,对室内空气污染提出了具体防治措施。  相似文献   

2.
为了解室内装修对室内空气质量的影响,文章随机抽取浙江省绍兴市60户新装修居室进行室内空气主要污染物监测,结果表明,以甲醛和总挥发性有机物(TVOC)超标最为严重,超标率分别为32.2%和65.6%。不同功能房间中,卧室、书房甲醛和总挥发性有机物浓度明显高于客厅。另外,总挥发性有机物与装修后时间长短有很大关系,装修后3个月时,超标率为98.3%,6个月超标率为75.0%,12个月超标率降低到23.3%。  相似文献   

3.
室内装修后苯、甲苯、二甲苯和甲醛污染调查   总被引:10,自引:0,他引:10  
对青岛市装修后房屋空气进行调查,按照装修时间分装修时间1周~6个月、7个月~1年、1年以上三个组,对三组室内空气中苯、甲苯、二甲苯和甲醛进行监测,发现室内装修时间短时苯、甲苯、二甲苯的浓度较高,甲醛浓度较低;随装修时间增长,苯、甲苯、二甲苯的浓度很快降低,但甲醛的浓度呈升高趋势。  相似文献   

4.
针对沈阳市5家大型超市监测,结果显示在9项共48个超标数据中有41个集中在二氧化碳、温度、苯并(a)芘和总挥发性有机物等4项指标中。其中二氧化碳超标最为普遍,超标率为64.0%;温度超标率为40.0%;苯并(a)芘超标率为36.0%;总挥发性有机物超标率为24.0%;苯、甲苯和二甲苯超标率分别为4.0%8、.0%和4.0%;氨超标率为8.7%;甲醛超标率为4.2%。  相似文献   

5.
总挥发性有机化合物(TVOC)是评价室内空气质量的重要指标,高浓度的总挥发性有机化合物(TVOC)会对人体健康造成重大影响。文章简述了室内空气中总挥发性有机化合物(TVOC)的定义、性质、来源及危害,重点总结了室内空气中总挥发性有机化合物(TVOC)的检测技术现状。结合室内空气中总挥发性有机化合物(TVOC)的分析检测实际,提出了室内空气中总挥发性有机化合物(TVOC)防治对策及控制。  相似文献   

6.
杭州市居室空气中芳香族化合物污染现状及其来源解析   总被引:3,自引:0,他引:3  
用热解吸/气质联用技术研究了杭州市居室空气中芳香族化合物的组成。结果表明,杭州市居室空气中共存在60种芳香族化合物,其中苯系化合物48种,非苯芳香族化合物12种,检出率大于50%的23种;苯、甲苯、乙苯、苯乙烯、邻二甲苯、间(对)-二甲苯等10种化合物的总含量之和大于85.39%,是室内空气中主要的芳香族污染物,除萘外,其他22种污染物的平均浓度值均随装修时间间隔延长而降低;污染物主要来源是室内装修过程中使用的或装修材料中残留的有机溶剂、机动车辆排放的尾气、居民家庭中常用的清洁用品及含萘等成分的防蛀剂。  相似文献   

7.
采用动态顶空进样,气相色谱/离子阱质谱法测定土壤中的苯系物。对样品的吹扫温度、吹扫时间和解析时间进行了优化,各组分的方法检出限:苯为0.43 μg/kg,甲苯为1.13 μg/kg,对、间二甲苯均为1.74 μg/kg,邻二甲苯为0.37 μg/kg;对5种苯系物的低、中质量浓度标液进行加标,回收率为82.0%~115%,重复测定7次的RSD为4.8%~15.1%。对某造纸厂周边土壤样品中苯系物进行测定,结果固废堆存处周边土壤中苯和甲苯检出。  相似文献   

8.
于2021年夏、秋季利用单光子电离飞行时间质谱仪(SPI-MS)在珠海市金湾环境空气自动站(以下简称“金湾站”)周边开展挥发性有机物(VOCs)走航观测。结果表明,金湾站周边大气中总VOCs(以TVOC表示)质量浓度为11.7~203μg/m3(5%~95%分位值浓度),平均值为104μg/m3。烷烃在VOCs组成中占比最高(39.7%),其次为芳香烃(30%)和含氧含氮烃(13.9%)。2021年秋季(9—11月)为ρ(TVOC)的主要高值时段,且在10—11月,芳香烃和含氧含氮烃对TVOC的贡献显著升高。臭氧(O3)生成贡献分析结果表明,烷烃和芳香烃对O3生成的贡献最高,二甲苯、乙苯、三甲苯、甲苯、戊烷/异戊烷是珠海市O3污染防治的优控VOCs物种,其对O3生成的贡献高达56.0%。其中,戊烷/异戊烷主要来自金湾站周边的电子专用材料制造企业,二甲苯/乙苯主要来自周边的电线、电缆制造,橡胶、塑料制品生产企业。  相似文献   

9.
采用Tenax/SPME富集结合GC/MS分析,对21所初装修和13所精装修新建建筑室内空气中VOCs进行测定,分别检出74种和58种污染物。对比了不同类型建筑室内VOCs组成的特征,指出了胺类物质主要来源于初装修使用的各类建筑材料中的化学填加剂;而芳香族化合物则和装修过程中使用的涂料以及胶粘剂等化工产品有关。同时对检出频度和浓度较高的组分和VOCs总量分别进行了定量,其中初装修一组和精装修一组甲苯和二甲苯浓度均值分别为115.7μg/m3和122.9μg/m33、38.2μg/m3和289.4μg/m3;苯和乙苯在两种类型的房屋中浓度变化不大,初装修一组为16.8μg/m3和60.4μg/m3,精装修一组为19.3μg/m3和73.5μg/m3;α-蒎烯在初装修一组检出频度(P<50%)和浓度水平(13.5μg/m3)均较低,在精装修一组中检出频度(P>85%)和浓度水平(61.5μg/m3)均有大幅增高;初装修一组VOCs的平均浓度为435.7μg/m3,而精装修一组平均浓度为815.9μg/m3。结果表明,精装修VOCs浓度一般比初装修VOCs浓度高2~5倍左右。  相似文献   

10.
室内空气污染调查   总被引:29,自引:3,他引:26  
为了解室内空气污染状况,广州市环境监测中心站对刚装修不久的10套私人居室和5家单位办公室的室内空气进行了监测。结果表明,甲醛、苯、NH3、NOx浓度超标,最高超标倍数分别为:甲醛22.0倍,苯3.01倍,NH3 2.58倍,NOx0.30倍。指出,这些污染物主要来源于装修材料和建筑材料,会对人体健康造成危害。提出,为防止室内空气污染,应从源头抓起,装修时尽量选用低毒或无毒的材料,装修后的居室或办公室要保持通风,以降低室内污染物浓度,进驻前请有关权威部门进行监测评估。另外可在室内摆放绿色植物,以吸附一些有毒化合物。  相似文献   

11.
苏君 《干旱环境监测》2009,23(2):125-128
为进一步掌握室内环境空气污染状况,对乌鲁木齐市毛坯房、公共场所和居民住宅的室内环境空气质量现状进行了监测统计,并调查了居民的健康状况,分析了室内空气污染的原因。监测结果表明,乌鲁木齐市新装修房屋室内环境污染较严重。对此提出了不同污染状况的防治对策。  相似文献   

12.
In the study reported here semipermeable membrane devices (SPMDs) were used to sample 28 PAHs and 19 PCBs in the gas phase in 15 single-family houses located in an area where domestic wood burning is widespread. Eight of the households used wood burning appliances whereas the others used other systems for residential heating. Most of the studied compounds were found in the houses: the PAHs at levels that were similar to or slightly higher than published SPMD-sampled levels for background or urban sites in Sweden, and the PCBs at levels that were somewhat lower than those recently found in both indoor and outdoor urban locations. A principal component analysis revealed that wood-burning heating systems may contribute to PAHs in indoor air. The sources may be emissions indoors or penetration from outdoors. The convenience of SPMD technology facilitates its use for semi-quantitative screening and monitoring of various persistent organic compounds indoors in dwellings and working environments.  相似文献   

13.
To study the distribution of Aspergillus spp. in outdoor and indoor air of asthmatic patients’ houses, as well as a review on the health effects of exposure to indoor Aspergillus. Open plates containing malt extract agar media were used to isolate fungi from the indoor (n?=?360) and outdoor (n?=?180) air of 90 asthmatic patients’ houses living in Sari City, Iran. Plates were incubated at room temperature for 7–14 days. Cultured Aspergillus spp. were identified by standard mycological techniques. All culture plates grew fungi, a testament to the ubiquitous nature of fungal exposure. Cladosporium spp. (29.2%), Aspergillus spp. (19.0%), and Penicillium spp. (18.3%) were most common inside the houses while Cladosporium spp. (44.5%), Aspergillus spp. (12.4%), and Alternaria spp. (11.1%) were most common outside the houses. Aspergillus flavus (30.1%) and A. fumigatus (23.1%) are the most commonly isolated species in indoor air. Aspergillus flavus (44.5%) and A. fumigatus (42.6%) were the most prevalent Aspergillus spp. outside. The most colony numbers of Aspergillus were isolated from kitchens (30.4%) and the least from bedrooms (21.1%). Aspergillus flavus was the most prevalent specie in all sampled rooms except in the kitchen where A. fumigatus was the most common. Aspergillus flavus is the most prevalent species among the Aspergillus spp. in the indoor and outdoor of a warm climate area. In these areas, A. flavus can be a major source of allergen in the air. Therefore, minimizing indoor fungal exposure could play an important role in reducing allergic symptoms in susceptible persons.  相似文献   

14.
Indoor and ambient concentrations of 21 volatile organic compounds (including 14 hazardous air pollutants) were measured in the homes of nearly 80 western Montana (Missoula) high school students as part of the 'Air Toxics Under the Big Sky' program during the 2004/2005 and 2005/2006 school years. Target analytes were measured using low flow air sampling pumps and sorbent tubes, with analysis of the exposed samples by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The results reported here present the findings of the first indoor/ambient air toxics monitoring program conducted in a semi-rural valley location located in the Northern Rocky Mountain/Western Montana region. Of all of the air toxics quantified in this study, toluene was found to be the most abundant compound in both the indoor and ambient environments during each of the two school years. Indoor log-transformed mean concentrations were found to be higher when compared with ambient log-transformed mean concentrations at P < 0.001 for the majority of the compounds, supporting the results of previous studies conducted in urban areas. For the air toxics consistently measured throughout this program, concentrations were approximately six times higher inside the student's homes compared to those simultaneously measured directly outside their homes. For the majority of the compounds, there were no significant correlations between indoor and ambient concentrations.  相似文献   

15.
Adsorbent sampling with analysis by thermal desorption, gas chromatography and mass spectrometry (TD/GC/MS) offers many advantages for volatile organic compounds (VOCs) and thus is increasingly used in many applications. For environmental samples and other complex mixtures, the MS detector typically is operated in the scan mode to aid identification of co-eluting compounds. However, scan mode does not achieve the optimal sensitivity, thus compounds occurring at low concentrations may not be detected. This paper develops and evaluates the application of a more sensitive TD/GC/MS method using selective ion monitoring (SIM) that is applicable to VOC mixtures found in ambient and indoor air. Based on toxicity and prevalence, 94 VOCs (including terpenes, aromatic, halogenated and aliphatic compounds) were selected as target compounds. Two analytical methods were developed: a conventional full scan method for ions from 29 to 270 m/z; and a SIM method using 16 time windows and different ions selected for the compounds in each window. Both methods used the same Tenax GR adsorbent sampling tubes, TD and GC parameters, and target and qualifier ions. Laboratory tests determined calibrations, method detection limits (MDLs), precisions, recoveries and storage stability. Field tests compared scan and SIM mode analyses for duplicate samples of indoor air in 51 houses and outdoor air at 41 sites. Statistical analyses included the development of error/precision models. The laboratory tests showed that most compounds demonstrated excellent precision (<10% for concentrations exceeding approximately 0.5 microg m(-3)), good linearity, near identical calibrations for scan and SIM modes, a wide dynamic range (up to 1500 microg m(-3)), and negligible storage losses after 1 month (7 compounds showed moderate losses). SIM mode MDLs ranged from 0.004 to 0.27 microg m(-3), representing a modest (1.1 to 22-fold) improvement compared to scan mode. However, in field tests the SIM method detected significantly more compounds (e.g., styrene and chloroform). Error models fit most compounds and allow quantification of errors at selected percentiles. Overall, while the new SIM method is somewhat time-consuming to develop, it offers greater sensitivity and maintains the high selectivity of traditional scan methods.  相似文献   

16.
Solid-phase microextraction (SPME) was studied for the measurement of volatile organic compounds (VOCs) in indoor air. An adsorptive PDMS/Carboxen fibre was used and an analytical methodology was developed in order to overcome competitive adsorption. Kinetics and adsorption isotherms were investigated for different sample volumes and model compounds. In order to evaluate competitive adsorption on the fibre, these compounds were studied alone and in mixture. From the results obtained, the operating conditions allowing co-adsorption of the target compounds were determined: the air sample is enclosed in a 250 mL glass bulb where the SPME fibre is exposed until adsorption equilibrium. This procedure was combined with GC/MS analysis for the identification and quantification of VOCs in indoor air. The performances were determined by using a standard gas containing 10 VOCs representative of indoor environments (acetaldehyde, acetone, BTX, alpha-pinene, trichloroethylene, alkanes). The detection limits were determined in single ion monitoring mode and for a signal to noise ratio of 3. Except acetaldehyde (6 microg m(-3)), they are all below 0.5 microg m(-3). Calibration curves are linear up to 10 micromol m(-3) for all the compounds with good correlation coefficients (above 0.99). The reproducibility ranges from 6 to 12% according to the compound. The methodology was then applied to the comparison of the VOCs content in classrooms of two different schools.  相似文献   

17.
This study was investigated the density and monthly distribution of indoor and outdoor microfungi in six different residential houses in Tekirdag City through the exposure of Petri dishes containing Rose-Bengal Streptomycin Agar media. Samples were collected in 1-month intervals over a period of 12 months between March, 2001, and February, 2002. We used 432 Petri dishes and counted a total of 4,205 microfungi colonies, 1,790 from indoor air and 2,415 from outdoor air. As a result, 42 species belonging to 12 genera were identified. The most frequent fungal genera were Penicillium (28.61%), Cladosporium (16.08%) and Alternaria (15.98%). While Penicillium (40.61%) and Cladosporium (15.92%) were the dominant genera of indoor air, Alternaria (20.62%) and Penicillium (19.71%) were isolated most frequently from outdoor air (Table 3). Alternaria citri (10.15%) and Penicillium brevicompactum (10.15%) were found to be the most frequent among the 42 identified species. While P. brevicompactum (19.55%) and Aspergillus niger (6.37%) were the most frequent indoor species, A. citri (13.37%) and Cladosporium cladosporioides (8.20%) were the most frequent outdoor species. Linear Regression Analysis was applied to determine whether or not there was a relationship between the number of colonies of isolated fungal genera and meteorological factors during the research period. Correlations between the presence of Aspergillus and temperature, relative humidity, duration of sunny periods and agents of air pollution such as SO(2) and PM were statistically significant. No significant correlations, however, were found between other fungal genera and environmental variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号