首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We analyzed national data on blood lead levels (BLL) and blood cadmium levels (BCL) in residents living near 38 abandoned metal mining areas (n?=?5,682, 18–96 years old) in Korea that were collected by the first Health Effect Surveillance for Residents in Abandoned Metal mines (HESRAM) from 2008 to 2011. The geometric mean BCL and BLL were 1.60 μg/L (95 % CI?=?1.57–1.62 μg/L) and 2.87 μg/dL (95 % CI?=?2.84–2.90 μg/dL), respectively, notably higher than levels in the general population in Korea and other countries. We found significantly higher BLL and BCL levels in people living within 2 km of an abandoned metal mine (n?=?3,165, BCL?=?1.87 μg/L, BLL?=?2.91 μg/dL) compared to people living more than 2 km away (n?=?2,517, BCL?=?1.31 μg/L, BLL?=?2.82 μg/dL; P?<?0.0001) and to the general population values reported in the literature.  相似文献   

2.
In this study, water samples were collected from 86 water treatment plants for analysis of haloacetic acids (HAAs) and trihalomethanes (THMs) from February to March, 2007 and from July to August, 2007. Both seasonal and geographical variations of disinfection by-products (DBPs) in drinking water of Taiwan were presented. The results showed that the five HAA concentrations (HAA5) were 1.0–38.9 μg/L in the winter and 0.2–46.7 μg/L in the summer; and the total THMs were ND-99.4 μg/L in the winter and ND-133.2 μg/L in the summer. For samples taken from the main Taiwan island, dichloroacetic acid (29.4–31.7%) and trichloroacetic acid (25.3–27.6%) were the two major HAA species, and trichloromethane was the major THM species (49.9–62.2%) in finished water. For water treatment plants located on the offshore islands outside of Taiwan, high bromide concentration was found in raw water, and higher percentage of brominated THMs and HAAs were formed in the overall formation. A statistically significant (P?<?0.005) logarithmic linear regression model was found to be useful to describe the correlations between TTHM and HAA5 or nine HAAs (HAA5?=?1.219 ×TTHM 0.754, R 2?=?0.658; HAA9?=?1.824 ×TTHM 0.735, R 2?=?0.678). No apparent difference was observed for DBPs concentrations between finished water and distribution samples in this study.  相似文献   

3.
The oil industry is a major source of contamination in Peru, and wastewater and sediments containing oil include harmful substances that may have acute and chronic effects. This study determined polycyclic aromatic hydrocarbon (PAH) concentrations by GC/MS, mutagenicity using TA98 and TA100 bacterial strains with and without metabolic activation in the Muta-ChromoPlate? test, and Microtox® 5-min EC50 values of Peruvian crude oil, and water and sediment pore water from the vicinity of San José de Saramuro on the Marañón River and Villa Trompeteros on the Corrientes River in Loreto, Peru. The highest total PAH concentration in both areas was found in water (Saramuro?=?210.15 μg/ml, Trompeteros?=?204.66 μg/ml). Total PAH concentrations in water from San José de Saramuro ranged from 9.90 to 210.15 μg/ml (mean?=?66.48 μg/ml), while sediment pore water concentrations ranged from 2.19 to 70.41 μg/ml (mean?=?24.33 μg/ml). All water samples tested from Saramuro and Trompeteros sites, and one out of four sediment pore water samples from Trompeteros, were found to be mutagenic (P?<?0.001). One sediment pore water sample in Saramuro was determined to have a measurable toxicity (Microtox EC50?=?335.1 mg/l), and in Trompeteros, the EC50 in water and sediment pore water ranged from 25.67 to 133.86 mg/l. Peruvian crude oil was mutagenic using the TA98 strain with metabolic activation, and the EC50 was 17.18 mg/l. The two areas sampled had very high PAH concentrations that were most likely associated with oil activities, but did not lead to acute toxic effects. However, since most of the samples were mutagenic, it is thought that there is a greater potential for chronic effects.  相似文献   

4.
This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18–30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2–4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.  相似文献   

5.
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4–12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11–0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (K S ?=?5.25?×?10?4 cm/s). The soil containing 47 % silt, 11 % clay, and 1.54 % organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R 2?=?0.977, RMSE?=?1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42–49 %. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.  相似文献   

6.
Perchlorate is an inorganic anion that is used in solid rocket propellants, fireworks, munitions, signal flares, etc. The use of fireworks is identified as one of the main contributors in the increasing environmental perchlorate contamination. Although fireworks are displayed for entertainment, its environmental costs are dire. Perchlorates are also emerging as potent thyroid disruptors, and they have an impact on the ecology too. Many studies have shown that perchlorate contaminates the groundwater and the surface water, especially in the vicinity of fireworks manufacturing sites and fireworks display sites. The health and ecological impacts of perchlorate released in fireworks are yet to be fully assessed. This paper reviews fireworks as a source of perchlorate contamination and its expected adverse impacts.  相似文献   

7.
In May 2008, an accidental damage of a Nigerian National Petroleum Corporation (NNPC) pipeline occurred in Ijegun area of Lagos, Nigeria, resulting in oil spillage and consequent contamination of the environment. The residual concentration of the total hydrocarbon (THC) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the groundwater and soil was therefore investigated between March 2009 and July 2010. Results showed elevated THC mean levels in groundwater which were above the World Health Organization maximum admissible value of 0.1 mg/l. THC values as high as 757.97 mg/l in groundwater and 402.52 mg/l in soil were observed in March 2009. Pronounced seasonal variation in the concentration of THC in groundwater and soil samples show that there was significant (P?<?0.05) difference in the measured concentration of THC between each season (dry and wet), with the highest being in the dry season and between the years 2009 and 2010. Significant hydrocarbon contamination, 500 m beyond the explosion site and 25 months after the incident, was observed revealing the extent of the spillage of petroleum products. The highest concentrations of 16.65 μg/l (benzene), 2.08 μg/l (toluene), and 4864.79 μg/l (xylene) were found in stations within the 100 m buffer zone. Most of the samples of groundwater taken were above the target value of 0.2 μg/l set for BTEX compounds by the Environmental Guidelines and Standards for Petroleum Industry in Nigeria. The level of hydrocarbon in the impacted area calls for concern and remediation of the area is urgently needed to reduce further negative impact on the ecosystem.  相似文献   

8.
The integrated pest management (IPM) modules of pesticide schedule on Basmati rice were validated at field experiments conducted in Northern India for consecutive 3 years (2005–2008). The pesticide residues were found below the detectable limit (<0.01–0.001 mg/kg) in soil and irrigation water samples of Kaithal region. In Dehra Dun region of Uttrakhand, the residues of carbendazim in rice grains and soil were detected below <0.01 mg/kg level. In second year experiments (2006–2007), only four non-IPM soil samples indicated the presence of chlorpyrifos and endosulfan in the range of ND <0.001 to 0.07 mg/kg, out of 45 samples analyzed. Carbendazim applied as seed treatment at Dehradun and Kaithal field trials was found below detectable limit in both IPM and non-IPM rice grains (<0.01 mg/kg) and irrigation water (0.01 μl/ml). Chlorpyrifos was detected in five water samples from Kaithal and one from Pant Nagar in the range of 0.003–0.006 μl/L, α- and β-isomer of endosulfan in the range of 0.005–0.03, and 0.005–0.02 μl/ml, respectively, in one sample from Pant Nagar and two from Kaithal, out of a total of 22 samples. In the region of Uttrakhand and Uttar Pradesh during 2007–2008, four non-IPM samples of soil indicated trace levels of endosulfan, out of 16 samples analyzed. The residues were detected below detection limit for carbendazim (<0.01 mg/kg) in soil samples of Dehradun IPM fields and for endosulfan and carbendazim (0.001–0.01 μl/L) in water samples each from IPM and non-IPM fields of Uttar Pradesh. The results of 3-year trials of IPM module indicated basmati rice as safe and economical with pesticide residue-free rice grains.  相似文献   

9.
The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012–2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n?=?138), River Kangsabati (n?=?13) and groundwater (n?=?12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always <0.2 indicating greater exposure to antibiotics and subsequent resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon?>?winter?>?summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.  相似文献   

10.
In this study, a method for the simultaneous determination of two steroid hormones, 17β-estradiol (E2) and estriol (E3), and a hormone mimicking polycarbonate, bisphenol-A (BPA), was developed and validated. This was thereafter used for the determination of the levels of the hormones in surface water collected around some livestock farms. The sensitivity of the method allowed the LODs and LOQs of the hormones and mimic hormone in the range 1.14–2.510 and 3.42–7.53 μg/L, respectively. The results revealed wide variability in the concentrations of E2 and E3, while BPA was not detected at any of the sampling stations. The concentration of E3 ranged between <1.14 and 45.5 μg/L (N = 120) in station 2 water. The highest concentration of E2 (15.7 μg/L, N = 80) was observed in water from station 1. The varied concentrations may be connected with the nature and sources of release, inconsistencies in analyte distribution due to dynamics of water flow pattern and the physical/chemical properties of the receiving water bodies.  相似文献   

11.
Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019–0.194 μg/L and 50–365 μg/g, respectively, for cadmium (Cd), 0.05–0.45 μg/L and 38–3,570 μg/g for chromium (Cr), 0.05–3.54 μg/L and 21–1,947 μg/g for manganese (Mn), and 0.03–0.49 μg/L and 2–56,982 μg/g for lead (Pb). The order of mean log K D found was Cd?>?Cr?>?Pb?>?Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.  相似文献   

12.
To study the status and source of aluminum (Al) contamination, a total of 21 sampling sites along six rivers near Xi’an City (Shaanxi province, China) were investigated during 2008–2010. The results indicated that the average concentration of total Al (Alt) in the six rivers increased by 1.6 times from 2008 to 2010. The spatial distribution of Alt concentrations in the rivers near Xi’an City was significantly different, ranged from 367 μg/L (Bahe River) to 1,978 μg/L (Taiping River). The Alt concentration was highest near an industrial area for pulp and paper-making (2,773 μg/L), where the Al level greatly exceeded the water quality criteria of both the USA (Criterion Continuous Concentration, 87 μg/L) and Canada (100 μg/L). The average concentration of inorganic monometric aluminum (Alim) was 72 μg/L which would pose threats to fishes and other aquatic lives in the rivers. The concentrations of exchangeable Al (Alex) in the sediment of the Taiping River sampled were relatively high, making it to be an alternative explanation of increasing Al concentrations in the rivers near Xi’an City. Furthermore, an increasing Al level has been detected in the upstream watershed near Xi’an City in recent years, which might indicate another notable pollution source of Al.  相似文献   

13.
This paper reports high levels and variability in arsenic (As) levels at locations identified as one of the highest As-contaminated locations in Pakistan. Groundwater pollution related to arsenic has been reported since many years in the areas lying in outskirts of District Lahore, Pakistan. A comparative study is done to determine temporal variations of As from three villages, i.e., Kalalanwala (KLW), Manga Mandi (MM), and Shamki Bhattian (SKB). Seventy-three percent of the 30 investigated samples ranging in depth from 20 to 200 m, show an increasing trend in variations of As concentration over a time span of 4 years and 87 % of samples exceeded the WHO standard of 10 μg/L for As while 77 % of samples have As concentration >50 μg/L (national standard). Further results indicate that high levels of As is accompanied with increase pH (r?=?0.8) favoring desorption of As from minerals at higher pH under oxidizing conditions. For health risk assessment of arsenic, the average daily dose, hazard quotient (HQ), and cancer risk were calculated. The residents of the studied areas had toxic risk index in the order of SKB>KLW>MM, with 87 % of samples exceeding the typical toxic risk index 1.00 (ranging from 2.3–48.6) which was 83 % (ranging from 0.3–41) 4 years before. The results of the present study therefore indicate that arsenic concentrations are increasing in the area, which needs an immediate attention to provide alternate sources of water to save people at risk.  相似文献   

14.
In this study, the levels of natural and anthropogenic metal contamination (aluminum (Al), iron (Fe), manganese (Mn), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn)) in surface sediments of three harbors along the Iranian coast of Gulf of Oman were examined and reported for the first time. Effect of grain size, mineralogy, normalization technique using Fe concentrations, and different sediment quality guidelines were discussed. Data from the harbors were compared with other harbors worldwide. Sediments inside the harbors are characterized by moderate and high levels of pollution by trace metals Cu (12–287 μg/g), Pb (11–1,780 μg/g), Zn (38–547 μg/g), Cr (70–2,370 μg/g), and Ni (31–116 μg/g). However, As and Cd did not show considerable pollution inside and outside the harbors. Considering that there is no industrial activity around the study harbors, the major sources of contamination in the harbors are repairing, fueling, greasing, and painting of fishing ships and boats. Mineralogy of sediments in the study area as well as trace metal concentration in reference samples taken from onshore geological units confirmed that natural inputs of Cd, Cu, Pb, and Zn in the harbors are very low while most of Ni and Cr contamination in the study area comes from erosion of ophiolitic mélange units at the North of Makran mountains.  相似文献   

15.
Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na+/Cl? molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n?=?20) can be classified into two groups. SGWS of group 1 (n?=?17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9 % of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n?=?3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n?=?2) and inflow of saline river water (n?=?1).  相似文献   

16.
A simple, rapid, and efficient dispersive liquid–liquid microextraction method, followed by UV–Vis spectrophotometry was developed for the preconcentration and determination of Pd ions in water samples. Pd ions react with α-furildioxime (chelating agent) to form a hydrophobic complex. Various parameters were altered to study and optimize their effects on the extraction efficiency, such as pH, ligand concentration, the type and volume of extraction and dispersive solvents, extraction time, and salt concentration. Under optimized conditions, the method exhibited an enrichment factor (C org/C aq) of 25 and recovery more than 98 % within a very short extraction time. The linearity of the method ranged from 10 to 200 μg?L?1. The limit of detection was 1.1 μg?L?1. The relative standard deviation for the concentration of 100 μg?L?1 of Pd was 2.3 % (n?=?10). Finally, the developed method was successfully applied to the extraction and determination of Pd in tap, river, mineral, and sea water samples.  相似文献   

17.
A simple, sensitive and reliable HPLC-FLD method for the routine determination of 4-nonylphenol, 4-NP and 4-tert-octylphenol, 4-t-OP content in water samples was developed. The method consists in a liquid–liquid extraction of the target analytes with dichloromethane at pH  3.0–3.5 followed by the HPLC-FLD analysis of the organic extract using a Zorbax Eclipse XDB C8 column, isocratic elution with a mixed solvent acetonitrile/water 65:35, at a flow rate of 1.0 mL/min and applying a column temperature of 40°C. The method was validated and then applied with good results for the determination of 4-NP and 4-t-OP in Ialomi?a River water samples collected each month during 2006. The concentration levels of 4-NP and 4-t-OP vary between 0.08–0.17 μg/L with higher values of 0.24–0.37 μg/L in the summer months for 4-NP, and frequently <0.05 μg/L but also between 0.06–0.09 μg/L with higher values of 0.12–0.16 μg/L in July and August for 4-t-OP and were strongly influenced by sesonial and anthropic factors. The method was also applied on samples collected over 2 years 2007 and 2008 from urban wastewaters discharged into sewage or directly into the rivers by economic agents located in 30 Romanian towns. Good results were obtained when the method was used for analysis of effluents discharged into surface waters by 16 municipal wastewater treatment plants, during the year 2008.  相似文献   

18.
The presence of pharmaceuticals in the environment is now a major concern given their potential adverse effects on organisms, particularly human beings. Because the feeding style and habitat of the crab Carcinus maenas make this species vulnerable to organic contaminants, it has been used previously in ecotoxicological studies. Lysosomal membrane stability (LMS) in crabs is a general indicator of cellular well-being and can be visualized by the neutral red retention (NRR) assay. LMS in crab hemolymph has been evaluated as a cellular biomarker of adverse effects produced by exposure to pharmaceutical compounds. Crabs were exposed in the laboratory to four different pharmaceuticals for 28 days in a semistatic 24-h renewal assay. Filtered seawater was spiked every 2 days with various concentrations (from 0.1 to 50 μg·L?1) of caffeine, ibuprofen, carbamazepine, and novobiocin. Results showed that NRR time, measured at day 28, was significantly reduced (p?<?0.05) after exposure to environmental concentrations of each pharmaceutical (caffeine?=?15 μg·L?1; carbamazepine?=?1 μg·L?1; ibuprofen?=?5 μg·L?1; and novobiocin?=?0.1 μg·L?1) when compared with control organisms. The predicted “no environmental effect” concentration/measured environmental concentration results showed that the selected pharmaceuticals are toxic at environmental concentrations and need further assessment. LMS monitoring in crabs is a sensitive tool for evaluating exposure to concentrations of selected drugs under laboratory conditions and provides a robust tier 1 testing approach (screening biomarker) for rapid assessment of marine pollution and environmental impact assessments for analyzing pharmaceutical contamination in aquatic environments.  相似文献   

19.
Probability-based nitrate contamination map of groundwater in Kinmen   总被引:1,自引:0,他引:1  
Groundwater supplies over 50 % of drinking water in Kinmen. Approximately 16.8 % of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 ?-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate–N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate–N in residential well water using logistic regression (LR) model. A probability-based nitrate–N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate–N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7 %. The highest probability of nitrate–N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC–pH-probability curve of nitrate–N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate–N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate–N contamination zones.  相似文献   

20.
Some common organochlorine, organophosphorus and pyrethroid insecticides were analysed in agricultural soil samples (n?=?35) and surface water and groundwater samples (n?=?25) collected from coastal areas of vegetable production in Togo. Analytical methods included solvent extraction of the insecticide residues and their subsequent quantification using GC-ECD. δ-HCH, heptachlor epoxide, 4,4-DDE, endosulphan (α, β and sulphate), lambda-cyalothrin and chlorpyrifos were found in the soil samples with concentrations that varied from non-detectable (ND) to 26.93 μg kg?1 dry weight. For water samples, heptachlor epoxide, 2,4-DDD, 4,4-DDD, 4,4-DDE and endosulphan (α, β, and sulphate) were found at contamination levels that varied from ND to 0.116 μg L?1. The concentration of insecticide residues detected in the water samples was below the limits set by the World Health Organization (WHO) and also by the European Union (EU), with the exception of the concentration of endosulphan sulphate at the Aného site, which was 0.116 μg L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号