首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
乌鲁木齐市米东污灌区农田土壤重金属污染评价   总被引:7,自引:0,他引:7  
对米东污灌区农田土壤重金属含量进行监测分析,利用不同的评价方法和标准对土壤重金属的环境质量进行评价。结果表明:米东污灌区农田土壤重金属含量分别为Cd(0.12±0.06)mg/kg,Cu(40.43±5.30)mg/kg,Zn(78.38±11.04)mg/kg,Pb(11.66±11.79)mg/kg,Ni(20.24±8.05)mg/kg,Cr(75.81±8.05)mg/kg。以国家土壤环境质量标准(二级)为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.337,污染程度为安全。以食用农产品产地土壤环境质量要求为标准评价,各元素的污染指数排序为Cu>Ni>Cr>Zn>Cd>Pb,综合污染指数为0.343,污染程度为安全。表明米东污灌区农田土壤重金属含量尚能达到食用农产品产地土壤环境质量要求。Pb、Cu、Zn的平均含量超过乌鲁木齐市土壤背景值,这说明污灌区土壤重金属Pb、Cu、Zn近年来已有所累积,存在一定的污染风险。  相似文献   

2.
污灌农田土壤镉污染状况及分布特征研究   总被引:3,自引:0,他引:3  
对沈阳郊区某河沿岸部分乡镇的污灌农田土壤中重金属全镉含量进行了分析,评价了土壤镉污染状况,并探讨了该河沿岸土壤中镉的沿程分布特征、横向分布特征和垂向分布特征.结果表明,农田土壤重金属镉含量范围为0.15~8.23mg/kg,均值为1.75mg/kg.用土壤环境质量标准二级标准值对土壤中的全镉含量进行评价,平均镉污染指数为5.95,为重度污染;用土壤背景值标准评价,平均镉污染指数为5.95,超过当地背景值水平8.39倍,污灌已造成该地区重金属镉污染,且污染程度十分严重.该河渠从上游到下游,沿岸土壤镉含量呈降低趋势;横向分布上,距离该河渠越远,镉含量有逐渐减少的趋势;垂向分布上,表层土壤镉含量最高.  相似文献   

3.
邢台污灌区土壤中重金属污染评价   总被引:2,自引:0,他引:2  
根据1982年和1995年的监测调查资料,评价邢台污灌区土壤环境质量。结果表明,砷、铬、铅在土壤中的积累量很小,污染较轻;而镉在土壤中的积累显著,污染严重,污灌区镉污染应引起重视。  相似文献   

4.
闽东某钼矿周边农田土壤钼和重金属的污染状况   总被引:7,自引:1,他引:6  
调查了闽东某钼矿周边农田土壤和稻米钼及重金属的污染状况,对土壤钼的人体健康风险进行了评价,探讨了土壤钼的安全阈值。结果表明,部分土壤遭受了铜和镉的污染,以轻度污染为主;部分稻米出现镍和镉的污染,以轻度污染为主;土壤全钼含量为3.30~325.6 mg/kg,最高值高出福建省土壤中钼的环境背景值87倍,说明该区土壤已遭受严重的钼污染。稻米钼含量为0.58~12.04 mg/kg,对人体具有很高的健康风险;根据稻米钼含量与土壤钼含量之间的关系和人体健康风险评价结果,推算出土壤中钼(全钼)的安全阈值不高于4.51 mg/kg。  相似文献   

5.
三峡库区重庆段淹没区土壤重金属分布及评价   总被引:3,自引:0,他引:3  
三峡库区重庆段淹没区土壤重金属含量均低于国家土壤环境标准三级,其中铜含量范围为10.7~80.2mg/kg,均值为37.0 mg/kg;铅含量范围为14.6~51.8mg/kg,均值为29.3mg/kg;锌含量范围为47.5~93.3mg/kg,均值为72.7mg/kg;镉含量范围为0.084~0.765mg/kg,均值为0.321mg/kg;汞含量范围为0.032~0.204mg/kg,均值为0.059mg/kg;砷含量范围为4.63~12.7mg/kg,均值为8.65mg/kg。三峡库区淹没区土壤主要受镉铜污染和铅镉污染。  相似文献   

6.
汞污染具有生物积累性,因而得到社会广泛关注。研究监测和评估了郑州市城区土壤和绿色植物叶片中汞浓度、分布、污染水平等。研究发现郑州市主城区土壤总汞浓度为0. 150~0. 958 mg/kg,平均浓度为0. 448 mg/kg;郑州市主城区绿色植物叶片总汞浓度为0. 017~0. 249 mg/kg,平均浓度为0. 107 mg/kg;土壤和叶片中汞浓度按功能区排序为交通枢纽区工业区商业区行政区高教区住宅区。采用地累积指数法对郑州市80个土壤样品的汞污染水平进行评估,结果显示60%受到轻度污染,35%受到偏中度污染,5%受到中度污染。研究较为全面地分析了土壤汞污染的现状及浓度,为郑州市土壤汞污染防治提供参考。  相似文献   

7.
奎屯市北郊蔬菜污灌区土壤重金属污染调查   总被引:1,自引:0,他引:1  
通过对奎屯市北郊污灌区菜地土壤中重金属含量的分析表明,所调查的污灌菜地土壤中铅、锌、镉、砷和汞均未超标,部分地块铜超标,说明多年来因工业废水的浇灌,已造成铜对局部区域土壤的污染。  相似文献   

8.
通过对北京市通州污灌区土壤现状调查与蔬菜重金属污染监测,结合土壤环境质量标准、食品卫生标准及污灌区污染历史,分析对比该区土壤和蔬菜重金属污染状况及其变化。结果表明,本次监测通州污灌区土壤中重金属平均含量均达到土壤环境质量标准(GB15618-1995)中二级标准限量。对照土壤中的重金属Cu、Pb、Cr、Cd和As均达到土壤一级标准。凉水河两岸和通惠北干渠中重金属含量均高于对照土壤,说明污灌区污水灌溉已使土壤受到一定程度的污染。与二十世纪70年代末监测结果相比,土壤中多数重金属含量处于上升趋势。污灌区蔬菜重金属含量监测结果表明,其含量水平均达到食品卫生标准,说明污灌区蔬菜尚未受到严重污染。  相似文献   

9.
张掖市某污灌区土壤环境质量调查   总被引:1,自引:0,他引:1  
对张掖市某污灌区土壤环境质量进行了调查,结果表明,灌区土壤受到一定程度的污染,为轻度污染水平,污染因子与污灌水特征因子关系密切.  相似文献   

10.
污灌区重金属污染对土壤的危害   总被引:38,自引:0,他引:38  
由于土壤中重金属元素的含量对人体健康影响很大,淮阴市环境监测中心站于1993年至1997年造反某污灌区中0.667hm^2的蔬菜田及其邻近的某一地下水灌区中0.667hm^2的蔬菜田按梅花布点法分别布设8个测点,对其土壤中的总镉、总汞、总砷、总铬和总锅进行监测。结果表明,地下水藻区5年来综合污染指数变化不大,污染等级属安全级,说明该灌区没有受到重金属污染,而污灌区的综合污染指数逐年增高,1995年  相似文献   

11.
通过对镇江地区土壤样品中 Cd 监测结果统计分析表明,全市69个样品中 Cd 质量比范围为0.06 mg/kg ~1.37 mg/kg,均值为0.23 mg/kg,与全国背景值相比,有一定程度富集;样品中 Cd 质量比成偏态分布,相对标准偏差较大。选用单项污染指数法对 Cd污染程度评价表明,镇江地区83%的土壤样品未受到 Cd 污染,14%为轻度污染,3%为中度污染。结合镇江地区的产业结构分析,电镀行业是土壤 Cd 污染的主要来源,道路运输、农药化肥在一定程度上也加重了污染。  相似文献   

12.
Speciation determines toxicity, transport pathways and residence time of a metal in different compartments of the environment. This study investigated the speciation of mercury in soils, derived from sites known for dumping of mine wastes in the Bibiani–Anwiaso–Bekwai district, a gold mining community of the Western Region of Ghana. Soil samples were taken from the surface; depths of 20, 40 and 60?cm from mine waste at both abandoned and active mine sites. Each sample was analysed for total mercury, organic mercury and elemental mercury. After sample treatment, digestion and reduction with stannous chloride (SnCl2), total mercury content was determined using the Inductively Coupled Plasma—Optical Emissions Spectrometer (ICP–OES). Organic mercury content was determined employing a differential technique after disposing of elemental mercury by heating. Total mercury content in samples ranged from 0.067 to 0.876?mg/kg for surface soils. The same soil of depths 20, 40 and 60?cm had total mercury from 0.102 to 1.066, 0.037 to 4.037 and 0.191 to 4.998?mg/kg, respectively. For organic mercury, concentrations range from 0.012 to 0.260?mg/kg for surface soil. Soil depths of 20, 40 and 60?cm had organic mercury concentrations from 0.016 to 0.653, 0.041 to 1.093 and 0.101 to 2.546?mg/kg respectively. Elemental mercury concentrations in surface soils, soils at depths of 20, 40 and 60 cm ranged from 0.043 to 0.780; 0.017 to 0.749; 0.014 to 2.944 and 0.009 to 2.452 mg/kg respectively. Among the sites studied, only galamsey tailings (GM) showed a trend of increasing total mercury level with increasing depth. For the other sites, trends were not defined. There has been no defined trend for elemental mercury with depth at any of the sampling sites. Just as with total mercury, it was only GM that showed an increasing trend of organic mercury concentration with depth.  相似文献   

13.
濮阳工业园区土壤重金属背景值及质量评价   总被引:6,自引:5,他引:1  
为了研究濮阳工业园区土壤重金属背景值,采集了该园区及周边土壤46个样品,测定了土壤中重金属Cu、Zn、Pb、Cr、Cd和Ni的含量,并采用污染负荷指数法和潜在生态危害指数法对土壤质量进行了评价。结果表明:工业园区土壤中Cu、Zn、Pb、Cr、Cd、Ni的背景值分别为36.2、118、49.2、40.6、0.125、15.3 mg/kg;Cu、Zn、Pb、Cd的含量高于河南省土壤重金属背景值;Pb为极强污染,Cu、Zn、Cd为中等污染,重金属污染程度从重到轻的排序为PbZnCuCd,表明濮阳工业园区土壤重金属具有轻微的潜在生态危害。  相似文献   

14.
刘宏  吴攀 《干旱环境监测》2014,(2):55-59,65
本研究在贵州兴仁县交乐村高砷煤矿废水灌溉区采集了55个土壤剖面(0 ~ 85 cm),以分析研究区内土壤砷的垂直变化趋势.结果表明,研究区内土壤砷的垂直分布极为广泛,在85 cm深的剖面砷含量为19.067 ~ 179.62mg/kg,均高于全国平均水平.同时还发现,距离污染源越近土壤剖面中的砷含量,无论是表层还是下层均高于未受或少受煤矿废水灌溉土壤中的砷含量.农田土壤中高含量砷的来源,除受当地高砷的地质背景影响外,高砷煤矿废水的灌溉也是重要的因素,砷在研究区内的垂直变化没有呈现出统一的规律.  相似文献   

15.
The pollution of soil is a source of danger to the health of people, even to those living in cities. The anthropogenic pollution caused by heavy industries enters plants then goes through the food chain and ultimately endangers human health. In the context, the knowledge of the regional variability, the background values and anthropogenic vs. natural origin of potentially harmful elements in soils is of critical importance to assess human impact. The present study was undertaken on soil contamination in Surat, Gujarat (India). The aims of the study were: i) to determine extent and distribution of heavy metals (Ba, Cu, Cr, Co, Ni, Sr, V and Zn) ii) to find out the large scale variability, iii) to delineate the source as geogenic or anthropogenic based on the distribution maps and correlation of metals in soils. Soil samples were collected from the industrial area of Surat from top 10 cm layer of the soil. These samples were analysed for heavy metals by using Philips PW 2440 X-ray fluorescence spectrometer. The data reveal that soils in the area are significantly contaminated, showing higher levels of toxic elements than normal distribution. The heavy metal loads of the soils in the study area are 471.7 mg/kg for Ba, 137.5 mg/kg for Cu, 305.2 mg/kg for Cr, 51.3 mg/kg for Co, 79.0 mg/kg for Ni, 317.9 mg/kg for Sr, 380.6 mg/kg for V and 139.0 mg/kg for Zn. The higher concentrations of these toxic metals in soils need to be monitored regularly for heavy metal enrichment.  相似文献   

16.
Surface soil (0-5 cm) samples from 17 sampling sites including different functional areas at Ji'nan city in Shandong Province of China were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). The total PAH concentrations were in the range from 1.31 mg kg(-1) to 254.08 mg kg(-1) (dry weight), and the average level of total PAHs was 23.25 mg kg(-1). The highest total PAHs concentrations were found in steel and iron plant at industrial areas. The total PAHs concentrations in industrial areas were markedly higher than those in other different functional areas. According to comparing total PAHs concentration in Ji'nan city to that of other urban areas, it was found that total PAHs concentrations were 6 to 137 times higher than other areas because of some specific sampling sites such as steel and iron plant and one main roadside. The results showed that PAHs in topsoil of Ji'nan city were suffered from strong pyrogenic influence, especially in industrial areas. However about 52.9% soil samples were mainly originated from both pyrogenic and petrogenic mixed sources based on Flu/Pyr ratios and Phe/Ant ratios. Furthermore, It was found that all individual PAHs except Fle were significantly correlated (P < 0.01) with LMW, HMW, total PAHs and SOM, and individual PAHs except Fle in soils were significantly correlated (P < 0.01) with each other. The nemerow composite index to assess the environmental quality showed that the soil sample of steel and iron plant in industrial areas and one main roadside were heavy pollution of PAHs, and about 47% soil sampling sites were safety, about 53% soil sampling sites were got different grades of PAHs pollution.  相似文献   

17.
Heavy metal pollution of sediments is a global concern and can be a serious problem in heavily industrialized parts of the world. Pollution by manganese is particularly common due to its ubiquitous natural occurrence, ease of mobilization, and extensive association with industry. In Ningxia, China, manganese pollution of Yellow River alluvial sediments was assessed by comparing manganese concentrations in 35 sediment samples with background values derived from similar sediments obtained at sites considered remote from potential sources of contamination. Natural background values of manganese were found to range from 192 to 323 mg/kg for surface sediments, and from 220 to 325 and 283 to 394 mg/kg for subsurface sediments at depths of 45–50 and 95–100 cm, respectively. In the study area, manganese content ranged from 565 to 1,363 mg/kg, indicating anthropogenic pollution extending to a depth of at least 1 m in the study area. All 35 samples were found to exceed the threshold effect concentration (TEC) of 460 mg/kg, below which adverse effects on sediment-dwelling organisms are not expected to occur, and one sample (T12) was found to exceed the probable effect concentration (PEC) of 1,100 mg/kg. PEC defines the threshold above which adverse effects are likely to be observed. Variogram analysis of the surface sediment manganese data revealed adherence to a Gaussian model, and ordinary kriging was used to generate a manganese distribution map. Analysis of the high nugget effect ratio indicates high, small-scale variations that are consistent with potential emissions from an adjacent electrolytic manganese plant.  相似文献   

18.
董铮  王琳  田芳 《干旱环境监测》2014,28(4):149-153
为了锯镇江地区土壤中重金属Cu和Ph的污染状况与空间分布,对镇江地区表层土壤中的Cu和Pb进行了采样监测。结果表明,镇江地区表层土壤中cu的含量为19.2~273mg/kg,Pb的含量为20.6~3846mg/kg。与全省土壤背景值相比,均有一定程度的富集。对cu和Pb的相互关系进行分析可得出,镇江地区土壤在一定程度上受到农业面源的污染。  相似文献   

19.
Spatial variability of salinity and alkalinity is important for site-specific management since they are the most important factors influencing soil quality and agricultural production. The objectives of this study were to analyze spatial variability in salinity and alkalinity and some soil properties affecting salinity and alkalinity, using classical statistics and geostatistical methods, in an irrigated field with low-quality irrigation water diverted from drainage canals. A field of 5 da was divided into 10 m x 10 m grids (5 lines in the east-west direction and 10 lines in the north-south direction). The soil samples were collected from three depths (0-30, 30-60 and 60-90 cm) at each grid corner. The variation coefficients of OM and sand contents were higher than other soil properties. OM had the maximum variability, with a mean of 1.63% at 0-30 cm depth and 0.71% at 30-60 cm depth. Significant correlations occurred between ESP, EC and each of Ca, Mg, K and CaCO(3) contents of the soils (p<0.01). Experimental semivariograms were fitted to spherical and gaussian models. All geostatistical range values were greater than 36 m. The soil properties had spatial variability at small distances at 60-90 cm depth. EC was variable within short distances at 30-60 cm depth. The nugget effect of ESP increased with soil depth. Kriged contour maps revealed that soils had a salinisation and alkalisation tendency at 60-90 cm depth based on spatial variance structure of the EC and ESP values. Spatial variability in EC and ESP can depend on ground water level, quality of irrigation water, and textural differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号