首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The Hulunbir grassland experienced aeolian desertification expansion during 1975–2000, but local rehabilitation during 2000–2006. Northern China suffered severe aeolian desertification during the past 50 years. Hulunbir grassland, the best stockbreeding base in Northern China, was also affected by aeolian desertification. To evaluate the evolution and status of aeolian desertification, as well as its causes, satellite images (acquired in 1975, 1984, 2000, and 2006) and meteorological and socioeconomic data were interpreted and analyzed. The results show there was 2,345.7, 2,899.8, 4,053.9, and 3,859.6 km2 of aeolian desertified land in 1975, 1984, 2000, and 2006, respectively. The spatial pattern dynamic had three stages: stability during 1975–1984, fast expansion during 1984–2000, and spatial transfer during 2000–2006. The dynamic degree of aeolian desertification is negatively related to its severity. Comprehensive analysis shows that the human factor is the primary cause of aeolian desertification in Hulunbir grassland. Although aeolian desertified land got partly rehabilitated, constant increase of extremely severe aeolian desertified land implied that current measures were not effective enough on aeolian desertification control. Alleviation of grassland pressure may be an effective method.  相似文献   

2.
Wind erosion is a primary cause of desertification as well as being a serious ecological problem in arid and semi-arid areas across the world. To determine mechanisms for restoring desertified lands, an unrestored shifting sand dune and three formerly shifting sand dunes (desertified lands) that had been enclosed and afforested for 5, 15, and 25 years were selected for evaluation on the south edge of the Tengger Desert, China. Based on sampling heights between 0.2 and 3 m, the critical threshold average wind speed was 6.5 m s?1 at 2 m where the sand transport rate was reduced from 285.9 kg m?2 h?1 on the unrestored dunes to 9.1 and 1.8 kg m?2 h?1 on the sites afforested and enclosed for 5 and 15 years, respectively. The percentage of wind eroded area was reduced from 99.9% on the unrestored dune to 94.5, 9.0, and 0.5% on the sites afforested and enclosed for 5, 15, and 25 years, respectively. Wind erosion was effectively reduced after 15 years. Although there were different driving factors for wind erosion mitigation on the different restoration stages, an increase in the vegetation cover, surface roughness, soil shear strength, soil clay content, organic matter, and reduction in the near-surface wind speed were the primary variables associated with the restoration chronosequence. We conclude that reducing the wind speed and developing a biological crust through vegetation restoration were the critical components for restoration of desertified land.  相似文献   

3.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

4.
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924–1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km2 (52.5 %), 56,661.1 km2 (36.4 %), 51,642.3 km2 (33.2 %), 49,773 km2 (32 %) and 48,669.4 km2 (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 %?year?1 during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km2) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.  相似文献   

5.
This paper investigates the sandy desertification change between 1986 and 2000 in the western Jilin province, North China. Land use and land cover data were obtained from Landsat TM data by using a supervised classification approach. We summarized the total area of desertified land by each county, as well as the area for each of the four categories of desertified land. The changes of different types of land use and land cover between 1986 and 2000 were calculated and analyzed. Taking Tongyu and Qianan as examples, both human and natural driving forces of the sandy desertification were analyzed. Our analyses indicate that the material sources and windy, warm and dry climate are the immanent causes of potential land desertification, while the irrational human activities, such as deforestation, reclaiming and grazing in the grassland, are the external causes of potential land desertification. However, rational human activities, such as planting trees and restoring grassland can reverse the land desertification process. Furthermore, the countermeasures and suggestions for the sustainable development in ecotone between agriculture and animal husbandry in North China are put forward.  相似文献   

6.
松嫩平原土地荒漠化动态监测与分析   总被引:2,自引:1,他引:1  
土地荒漠化是土地退化的一种主要形式,也是生态环境恶化的一种主要表现,严重制约着农业生产的发展.以1975年MSS卫星遥感影像、1990年TM卫星遥感影像以及2001年ETM卫星遥感影像等数据为信息源,采用地理信息系统的分析方法,引入荒漠化动态度等表征参量,建立了科学的荒漠化土地类型和土地动态转化分级系统,对我国松嫩平原近30年来的荒漠化土地进行了动态变化分析.结果表明,在1975~1990年期间,松嫩平原荒漠化土地呈明显发展趋势,其面积增加了1368931hm2,荒漠化边缘地区恶化现象明显强于腹地;在1990~2001年期闻,松嫩平原荒漠化土地总面积缓慢减少.减少面积为297867hm2,荒漠化呈逆转趋势,逆转现象边缘地区强于腹地,土地荒漠化趋势基本得到遏制.  相似文献   

7.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

8.
This study aimed to analyze the impact of Zayandehrood Dam on desertification using the spatio-temporal dynamics of land use/land cover (LULC) and land surface temperature (LST) in an arid environment in central Iran from 1987 to 2014. The LULC and LST images were calculated from Landsat TM, ETM+, and OLI data, and their accuracies were assessed against reference data using error matrix and linear regression analysis. Results showed that salty and bare lands increased up to 57,302 ha, while agricultural lands declined substantially (28,275.58 ha) in the region. The changes in LULC classes resulted in dramatic variations in LST values. The average temperature showed a 5.03 °C increase, and the minimum temperature increased by 5.66 °C. LST had an increasing trend in bare lands (8.74 °C), poor rangelands (6.8 °C), agricultural lands (9.46 °C), salty lands (9.6 °C), and residential areas (3.18 °C) in this 27-year period. Rainfall and temperature trend analysis revealed that the main cause of these extreme changes in LULC and LST was largely attributed to the drying up of Zayandehrood River due to dam construction and allocating water mainly for industrial sectors. Results indicate that in addition to LULC changes, the spatio-temporal variations of LST can be used as an effective index in desertification assessment and monitoring in arid environments.  相似文献   

9.
Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa?=?0.88) for 1990 and 85 % (kappa?=?0.81) for 2009. It was found that the city has expanded over 42.75 km2 within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5?±?2.6 °C increase in land surface temperature, vegetation to fallow 6.7?±?3 °C, fallow to built-up is 3.5?±?2.9 °C and built-up to dense built-up is 5.3?±?2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N–S and NE–SW profiles.  相似文献   

10.
Estimation of late twentieth century land-cover change in California   总被引:1,自引:0,他引:1  
We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973?C2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state??s land cover by 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号