首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady- and transient-state simulations of groundwater flow and particle movement in the sub-watershed of the river Labe in Dě?ín town was carried out using Visual MODFLOW software. The simulations were performed for calibration and for the scenarios that the change in the water level of the river Labe was undergoing. Steady-state simulation was carried out for the sake of calibration of model outputs. For transient simulation, two different scenarios were considered in order to investigate the response of the aquifer system to the stresses applied on surface water of the river. The simulation results have shown that the surface water and groundwater interactions, and the subsequent particle movement were affected by the stresses applied on the surface water in the river Labe. The first scenario involved the rapid recharge of surface water to the aquifer in the vicinity of the river while particles still move towards the river at the places far away from the river. At the end of the second scenario, particles still tend to move towards the river slowly and finally tend to stay within the aquifer as equilibrium of hydraulic gradient is reached between the surface and groundwater levels. The time series graphs of hydraulic heads at all observation wells show that the groundwater level in the surrounding aquifer rises significantly as a result of recharges from the river. The local water balance of the study area was calculated and expressed as the rates of water entering and leaving the system. At the end of the second scenario, the difference between the rate of flow into and out of the model area was 0.73 m3 day?1.  相似文献   

2.
Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984–2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007–2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.  相似文献   

3.
Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making  相似文献   

4.
Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400–600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.  相似文献   

5.
Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km2 have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m3). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10 % to 15 %.  相似文献   

6.
An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area.  相似文献   

7.
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40?×?40?×?40 m3. The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5?μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.  相似文献   

8.
A three-dimensional contaminant transport model has been developed to simulate and monitor the migration of disposal of hydrocarbon exploration produced water in Injection well at 2,100 m depth in the Upper Cretaceous Pab sandstone, Bhit area in Dadu district of Southern Pakistan. The regional stratigraphic and structural geological framework of the area, landform characteristics, meteorological parameters, and hydrogeological milieu have been used in the model to generate the initial simulation of steady-state flow condition in the underlying aquifer’s layers. The geometry of the shallow and deep-seated characteristics of the geological formations was obtained from the drilling data, electrical resistivity sounding surveys, and geophysical well-logging information. The modeling process comprised of steady-state simulation and transient simulation of the prolific groundwater system of contamination transport after 1, 10, 30 years of injection. The contaminant transport was evaluated from the bottom of the injection well, and its short- and long-term effects were determined on aquifer system lying in varying hydrogeological and geological conditions.  相似文献   

9.
The groundwater inflow into a mine during its life and after ceasing operations is one of the most important concerns of the mining industry. This paper presents a hydrogeological assessment of the Irankuh Zn-Pb mine at 20 km south of Esfahan and 1 km northeast of Abnil in west-Central Iran. During mine excavation, the upper impervious bed of a confined aquifer was broken and water at high-pressure flowed into an open pit mine associated with the Kolahdarvazeh deposit. The inflow rates were 6.7 and 1.4 m3/s at the maximum and minimum quantities, respectively. Permeability, storage coefficient, thickness and initial head of the fully saturated confined aquifer were 3.5?×?10?4 m/s, 0.2, 30 m and 60 m, respectively. The hydraulic heads as a function of time were monitored at four observation wells in the vicinity of the pit over 19 weeks and at an observation well near a test well over 21 h. In addition, by measuring the rate of pumping out from the pit sump, at a constant head (usually equal to height of the pit floor), the real inflow rates to the pit were monitored. The main innovations of this work were to make comparison between numerical modelling using a finite element software called SEEP/W and actual data related to inflow and extend the applicability of the numerical model. This model was further used to estimate the hydraulic heads at the observation wells around the pit over 19 weeks during mining operations. Data from a pump-out test and observation wells were used for model calibration and verification. In order to evaluate the model efficiency, the modelling results of inflow quantity and hydraulic heads were compared to those from analytical solutions, as well as the field data. The mean percent error in relation to field data for the inflow quantity was 0.108. It varied between 1.16 and 1.46 for hydraulic head predictions, which are much lower values than the mean percent errors resulted from the analytical solutions (from 1.8 to 5.3 for inflow and from 2.16 to 3.5 for hydraulic head predictions). The analytical solutions underestimated the inflow compared to the numerical model for the time period of 2–19 weeks. The results presented in this paper can be used for developing an effective dewatering program.  相似文献   

10.
Monitoring and assessment of the coastal aquifers are becoming a worldwide concern for the need of additional and sustainable water resources to satisfy demographic growth and economic development. A hydrochemical and geoelectrical investigation was conducted in the El-Omayed area in the northwestern coast of Egypt. The aim of the study was to delineate different water-bearing formations, provide a general evaluation of groundwater quality, and identify the recharge sources in aquifers. Thirty-seven water samples were collected and chemically analyzed from the sand dune accumulations and oolitic limestone aquifers. Fifteen profiles of vertical electrical soundings (VESs) were obtained in the oolitic limestone aquifer to examine the variations of subsurface geology and associated groundwater chemistry. The groundwater reserves in the El-Omayed area are mainly contained in sand dune accumulations and oolitic limestone aquifers. The aquifer of sand dune accumulations contains freshwater of low salinity (average total dissolved solids (TDS)?=?974 mg/l). Groundwater of oolitic limestone aquifer is slightly brackish (average TDS?=?1,486 mg/l). Groundwater of these aquifers can be used for irrigation under special management for salinity control, and regular leaching as indicated by electrical conductivity and sodium adsorption ratio. Results of VES interpretation classified the subsurface sequence of oolitic limestone aquifer into four geoelectric zones, with increasing depth, calcareous loam, gypsum, oolitic limestone, and sandy limestone. Oolitic limestone constitutes the main aquifer and has a thickness of 12–32 m.  相似文献   

11.
This paper presents the development of a regional flow simulation model of the stream–aquifer system of Ismarida plain, northeastern Greece. It quantifies the water budget for this aquifer system and describes the components of groundwater and the characteristics of this system on the basis of results of a 3-year field study. The semiconfined aquifer system of Ismarida Lake plain consists of unconsolidated deltaic clastic sediments, is hydraulically connected with Vosvozis River, and covers an area of 46.75 km2. The annual precipitation ranges in the study area from 270 to 876 mm. Eighty-seven irrigation wells are densely located and have been widely used for agricultural development. Groundwater flow in this aquifer was simulated with MODFLOW. Model calibration was done with observed water levels, and match was excellent. To evaluate the impacts of the current pumping schedule and propose solutions, four management scenarios were formulated and tested with the model. Based on model results, the simulated groundwater budget indicates that there must be approximately 33% decrease of withdrawals to stop the dramatic decline of groundwater levels. The application of these scenarios shows that aquifer discharge to the nearby river would be very low after a 20-year period.  相似文献   

12.
In semi-arid areas like the Kairouan region, salinization has become an increasing concern because of the constant irrigation with saline water and over use of groundwater resources, soils, and aquifers. In this study, a methodology has been developed to evaluate groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer, were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998–2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.  相似文献   

13.
Arsenic groundwater contamination exceeding 0.05 mg/l affecting the Newer Alluvial tracts of Patna and Bhojpur, the two worst affected districts located in the Middle Ganga Plain in the Bihar state, has been studied The area is underlain by two-tier Quaternary aquifer systems within a depth of 300 m below ground level, separated by a 15?C32-m-thick clay/sandy clay aquitard. The upper part (<50 m depth) of the shallow aquifer system is arsenic-contaminated. The deeper aquifer system (lying below 120?C130 m depth) exhibits low arsenic load (max 0.0035 mg/l), having hydraulic conductivity between 64.88 and 82.04 m/day. Groundwater in the deeper aquifer occurs under semi-confined to confined condition due to poor hydraulic conductivity of the middle clay (4.7 × 10???2???7.2 × 10???3 m/day). Hydraulic head of the deeper aquifer remains close to the surface than the shallow aquifer. The two aquifer systems in the Newer Alluvium are replaced by a thick single aquifer system in the adjoining Older Alluvium, within a depth of 330 m below ground. In the arsenic-contaminated area, deeper aquifer is protected by a middle clay, which may be developed for community drinking water supply by deep tube wells having a yield capacity of 150 m3/h.  相似文献   

14.
Hierakonpolis, Greek for City of the Hawk, nearly 25 km NW of Idfu (Egypt), is an important and extensive archaeological discovery covering a large area. Its richness in archaeological artifacts makes it a valuable site. It has a valid claim to be the first nation state, as indicated by the Palette of Narmer discovered in its main mound. Geological and hydrogeological investigations at the Hierakonpolis Temple Town site documented nearly a 4.0-m water table rise from as early as 1892 to the present. In addition to the rising water levels, the increase of both subsoil water salinity and humidity threatens and damages fragile carvings and paintings within tombs in Kingdom Hill, the foundation stability of the site, and the known and still to be discovered artifact that recent pottery finds dates at least 4,000 BCE. Representative rock and soil samples obtained from drilled cores in the study area were chosen for conducting detailed grain size and X-ray analysis, light and heavy mineral occurrences, distribution of moisture and total organic matter, and scanning electron microscopy investigations. Mineralogical analysis of clays indicated that the soil samples are composed of smectite/illite mixed layers with varying proportions of smectite to illite. Kaolinite is the second dominant clay constituent, besides occasional chlorite. Swelling of the clay portion of the soil, due to the presence of capillary groundwater, in contact with buried mudbrick walls expands and causes severe damage to important exposed and buried mudbrick structures, including the massive ancient “fort” believed to date from the Second Dynasty (from 2,890 to 2,686 BC). The “fort” is 1.0 km south of the Temple Town mounds near to confluence of Wadi Abu Sufian. Groundwater samples from the shallow aquifer close by the intersection of Wadi Abu Sufian and the Nile flood plain were analyzed for chemical composition and stable isotope ratios. The groundwater in the upper zone (subsoil water) within fine-grained Nile alluvium is characterized by high salinity which varies from 415 to 4,500 mg/L total dissolved solids. In contrast, most of the groundwater samples in the lower zone (Quaternary aquifer) are characterized by a low salinity in the order of 164–792 mg/L. Values of δD and δO18 obtained from this deep (9–20 m) aquifer ranged from 16.98 to 19.87?‰ and from 1.67 to 2.99?‰, respectively. These values indicated that the Quaternary aquifer waters are recharged directly from recent Nile water. Subsoil water is very shallow in the area; it ranged from 0 to 2.6 m with a mean of 1.1 m within the main mound of the Hierakonpolis Temple Town site by 2003, in contrast to its more than 4.5-m depth in 1897. The exposure of subsoil water to increased evaporation is expected, with a consequent increase in the concentrations of dissolved solids and usually large proportions of chloride and sulfate. Artifacts recovered from the Temple Town site are becoming damaged and destroyed by crystallization processes caused by repeated wetting and drying of salt and the accumulation of new salts.  相似文献   

15.
This study deals with the implications of depletion of groundwater levels in three layered aquifers and its management to optimize the supply demand in the urban settlement near Kahota Industrial Triangle area, located adjacent to the Soan River, Islamabad Pakistan. Initially, a groundwater 3-D steady-state flow model has been developed, calibrated to the known observed heads of 24 water wells, verified, and confirmed that convergence has actually arrived and hydraulic heads are no more changing. Later, the transient simulation was carried out with the constant discharge rates of groundwater by means of pumping wells, storage factor, porosity, and observed drawdown matched with the simulated drawdown that appears to fall in close agreement with a difference of 0.25 m. As such, the developed groundwater model has facilitated to understand, evaluate, and to predict regional trends of groundwater flow regimes and their ultimate utilization at a maximum rate of 4.5 million gallons/day for the growing urban settlement. The calibrated and verified model was then used to simulate the depletion of groundwater level, annual water balance, discharge versus time drawdown, and a temporal behavior of the system over an extended period of pumping. The modeling results indicate that, due to the pumping, the direction of flow has changed: first from groundwater regimes to the Soan River and then it is entirely reversed from the Soan River to the groundwater regimes as the drawdown started to deepen.  相似文献   

16.
As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ18O, δ2H and 3H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization.  相似文献   

17.
Semi-arid regions across the globe are fronting water crises, signaling a challenge to ensure future water security. Given the high inter-seasonal rainfall variability and unrestrained groundwater extraction, the precise quantification of groundwater flow components in an aquifer system is a priority. To address this challenge, we used high-resolution remote sensing (RS) data (Landsat and IRS) and GIS modeling (SEBAL, ArcCN) to spatially quantify major groundwater balance (GWB) components, viz., evapotranspiration (ET), rainfall recharge (R), surface runoff (Q), groundwater extraction (PG), irrigation return flow (IRF), and ultimately changes in groundwater storage (ΔS) in a small semi-arid crystalline representative watershed. Results show that a total of ~?230 mm of groundwater is extracted during 2008–2009, creating a negative impact on the groundwater resource, which is further enhanced by limited recharge and high ET. A decrease of approximately 65 mm in groundwater storage is observed in a single hydrological year, and given a very low specific yield, this decrease will introduce large water level decline. The study establishes that declining groundwater level in the watershed is a direct result of over-extraction, and owing to this scenario, efficient irrigation and land use policies are suggested as potential approaches to minimize extraction specifically in the dry season. Our methodology provides a systematic assessment of vital GWB components at a high spatial resolution and an insight on various sustainable mitigation methods. This methodology is useful in the planning and management of groundwater resources, particularly in water-stressed areas.  相似文献   

18.
This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km2 encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam–loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.  相似文献   

19.
In this study, land use change and its effects on level and volume of groundwater were investigated. Using satellite images and field measurements, change in land uses was determined from 1998 to 2007. By analyzing the observation wells data and preparing the zoning maps in GIS, groundwater level fluctuations were assessed. Considering the area corresponding to these fluctuations, changes in aquifers volume were calculated. The rain gauge and synoptic stations data were used to calculate meteorological parameters and evapotranspiration. The water requirement of the main crops was determined by CROPWAT software. Results showed an increase in average rainfall and crops water requirement. The classification of satellite images showed that 11,800 ha was increased in lands under irrigated crops cultivation, while 27,655 ha of rangeland was declined in the region. Groundwater levels dropped an average of 7 m, equal to 63.4 MCM reductions in volume of water in the aquifer.  相似文献   

20.
Sea level changes are typically caused by several natural phenomena, including ocean thermal expansion, glacial melt from Greenland and Antarctica. Global average sea level is expected to rise, through the twenty-first century, according to the IPCC projections by between 0.18 and 0.59 cm. Such a rise in sea level will significantly impact coastal area of the Nile Delta, consisting generally of lowland and is densely populated areas and accommodates significant proportion of Egypt’s economic activities and built-up areas. The Nile Delta has been examined in several previous studies, which worked under various hypothetical sea level rise (SLR) scenarios and provided different estimates of areas susceptible to inundation due to SLR. The paper intends, in this respect, to identify areas, as well as land use/land cover, susceptible to inundation by SLR based upon most recent scenarios of SLR, by the year 2100 using GIS. The results indicate that about 22.49, 42.18, and 49.22 % of the total area of coastal governorates of the Nile Delta would be susceptible to inundation under different scenarios of SLR. Also, it was found that 15.56 % of the total areas of the Nile Delta that would be vulnerable to inundation due to land subsidence only, even in the absence of any rise in sea level. Moreover, it was found that a considerable proportion of these areas (ranging between 32.32 and 53.66 %) are currently either wetland or undeveloped areas. Furthermore, natural and/or man-made structures, such as the banks of the International Coastal Highway, were found to provide unintended protection to some of these areas. This suggests that the inundation impact of SLR on the Nile Delta is less than previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号