首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
抚顺市PM10中元素分布特征及来源分析   总被引:4,自引:2,他引:2  
为了确定抚顺市PM10中元素的浓度特征及其来源,于2006—2007年的采暖季、风沙季和非采暖季在抚顺市的6个采样点采集PM10样品,并用等离子体原子发射光谱法(ICP-AES)测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量。结果表明,Al、Mg、Ca、Na、K、Mn、Fe等地壳元素在17种元素中占有较大比重,全年平均达到97.0%。富集因子分析结果表明,Cu、Zn、Pb、Cr、Co、Cd等元素在各季和各采样点明显受到人为活动影响,是典型的污染元素。主因子分析结果显示,土壤风沙尘、建筑尘、燃煤尘、道路扬尘、机动车尾气排放、金属冶炼、锰、铜、钛工业源是抚顺市PM10中元素的主要来源。  相似文献   

2.
北京市主要PM10排放源成分谱分析   总被引:8,自引:0,他引:8  
对北京市土壤尘、道路扬尘、城市扬尘、建筑施工尘、钢铁尘、煤烟尘等主要PM10无组织排放源和固定源进行采样、分析,建立相应的成分谱数据库,通过对其化学组分分析,确定各类PM10排放源的化学组分特征和标识元素。土壤尘、建筑施工扬尘、钢铁尘、煤烟尘PM10的标识元素分别为Si、Ca、Fe、Al,道路扬尘显示出明显的土壤尘、建筑施工尘和机动车污染的特征,城市扬尘成分谱与道路尘有很强的共线性,具有明显的道路扬尘特征。  相似文献   

3.
因子分析法解析北京市大气颗粒物PM10的来源   总被引:17,自引:3,他引:17  
2004年10月份在北京市6个采样点采集了大气PM10样品,分析了大气颗粒物的质量浓度、元素组成、离子、有机碳(OC)和元素碳(EC)的浓度,并用因子分析模型对颗粒物的来源进行了研究。结果显示,北京市大气颗粒物的来源主要有6类:建筑水泥尘/机动车尾气尘/燃煤尘、土壤风沙尘、二次粒子尘、工业粉尘、生物质燃烧尘和燃油尘。用模型计算得到的各源对PM10的贡献率分别为建筑水泥尘/机动车尾气尘/燃煤尘占36.57%、土壤风沙尘占16.07%、二次粒子尘占12.33%、工业粉尘占10.29%、生物质燃烧尘占6.07%、燃油尘占3.84%、其它占14.84%。其中建筑水泥/机动车尾气尘/燃煤尘、土壤风沙尘、二次粒子尘、工业粉尘是大气颗粒物PM10的主要来源。实验表明,在缺少源成分谱时可以用因子分析模型来分析大气颗粒物的来源及其相对贡献。  相似文献   

4.
石家庄市大气颗粒物元素组分特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物的污染特征及其来源,于2013年4—5月在主城6区分别采集TSP、PM10和PM2.5颗粒物样品,利用ICP-MS分析其中的22种元素浓度。结果表明,石家庄市城区Ca、Fe元素在各粒径颗粒物中含量都较高,PM2.5中的S、K含量较高,PM10和TSP中Mg、Al的浓度相对较高。颗粒物的主要来源为燃煤尘、道路尘和建筑尘,TSP、PM10和PM2.5具有较好的统计相关性和同源性。  相似文献   

5.
系统研究建立高原典型城市拉萨市开放源(土壤风沙尘、道路扬尘、施工扬尘、采矿扬尘),移动源(机动车尾气尘),固定源(工业烟粉尘、生物质燃烧尘及餐饮油烟)共3类8种大气颗粒物(PM_(2.5)、PM_(10))污染源化学成分谱。研究结果表明:开放源以地壳类元素为主,自然背景特征明显;移动源源成分谱中元素碳含量明显高于其他城市,在PM_(2.5)、PM_(10)源谱中分别占60.15%、51.86%,有机碳含量也相对较高,均超过20%;固定源中,牛粪和松柏枝两类生物质燃烧污染源的有机碳含量显著高于其他组分,工业烟粉尘中Ca远高于其他组分,在PM_(2.5)、PM_(10)源谱中分别占21.32%、21.21%。移动源、固定源源成分谱均显示出高原城市的独特特征。  相似文献   

6.
于2017年1月—2018年1月在潍坊市城区8个监测点位按季节采集了环境空气颗粒物样品,对其组分进行分析;采用电子低压冲击仪(ELPI)稀释采样法和稀释四通道法2种源采样方法同步采集源样品,建立了潍坊市本地化的燃煤源、钢铁源等排放源的颗粒物源成分谱;结合排放源清单,利用化学质量平衡受体模型(CMB)开展不同行业的细颗粒物(PM2.5)和可吸入颗粒物(PM10)的精细化来源解析。结果表明,各监测点位ρ(PM2.5)、ρ(PM10)年均值均超过环境空气质量二级标准;潍坊市城市扬尘、土壤风沙尘、建筑水泥尘特征组分分别为硅(Si)、Si、钙(Ca),燃煤尘和造纸碱回收尘的特征组分均为硫酸根离子(SO42-);PM2.5首要的贡献源类为煤烟尘,分担率为36%;其次为机动车尘,分担率为25.4%;扬尘的分担率为21.8%;煤烟尘中分担率最高的是工业燃煤(18%);机动车尘中以载货汽车分担率最大(14%)。PM10首要的贡献源类也是煤烟尘,分担率为30.9%,其次是扬尘(27.6%)、机动车尘(21.5%);煤烟尘中分担率最高的是工业燃煤,为15.4%,机动车尘中以载货汽车分担率最大,为11.8%。工艺过程的分担率均较低。  相似文献   

7.
2013—2014年采集贵阳市大气PM_(2.5)样品357个,利用ICP-OES和ICP-MS检测样品中无机元素的含量。结果表明:23种元素的年均值高低依次为Na Ca Al K Mg Fe Cu Zn Mn Pb Ba Cr Ni Sr As=Zr WRb Ga Bi=Ge Co U,其中Cr、As的年均值分别为(30±20) ng/m3和(8±5) ng/m3,超过《环境空气质量标准》(GB3095—2012)的年均参考限值。运用正定矩阵因子分解法(PMF)来源解析表明:该市大气PM_(2.5)的主要来源为燃煤排放源、生物质燃烧源、交通源、建筑水泥尘源、土壤风沙尘源和残油燃烧源,其贡献率分别为46. 6%、21. 7%、14. 8%、9. 0%、6. 2%和1. 7%,且有显著的季节变化特征。  相似文献   

8.
北京市大气PM10源解析研究   总被引:10,自引:5,他引:10  
于2004年在北京市定陵、车公庄、古城、亦庄、房山和奥体中心6个采样点采集大气PM10环境样品,针对北京市颗粒物主要排放源采集土壤尘、建筑水泥尘、燃煤等污染源PM10样品,分别对其中的无机元素、离子、有机碳(OC)和元素碳(EC)进行测定。采用代表北京市颗粒物主要排放源PM10组分特征的成分谱,利用CMB受体模型对PM10来源进行解析。结果表明,PM10的最大来源为土壤尘,其它贡献源类依次为燃煤排放、机动车/燃油排放、二次粒子(SO42-、NO3-和NH4 )、建筑水泥尘。污染源贡献具有明显的季节变化,并存在一定的地域变化。  相似文献   

9.
重庆城区不同粒径颗粒物元素组分研究及来源识别   总被引:2,自引:2,他引:0  
为研究重庆市大气颗粒物的污染特征及其来源,于2010年3—10月在主城区分别采集PM1.0、PM2.5和PM103种粒径的颗粒物样品,利用XRF分析其中的26种元素浓度。结果表明,重庆市主城区S元素在各粒径中含量都较高,细粒子中K的含量较高,粗粒子中Si、Ca和Fe的浓度较大。富集因子分析表明,主城区Cd、S、Se等污染元素的富集系数较大,且粒径越小,富集现象越明显。利用因子分析得出土壤风沙、扬尘、燃煤的燃烧、机动车燃油产生的尾气排放、生物质燃烧排放是重庆市颗粒物污染的主要来源。  相似文献   

10.
杭州市大气PM2.5和PM10污染特征及来源解析   总被引:10,自引:0,他引:10  
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。  相似文献   

11.
杭州市大气PM2.5和PM10污染特征及来源解析   总被引:36,自引:12,他引:24  
2006年在杭州市两个环境受体点位采集不同季节大气中PM2.5和PM10样品,同时采集了多种颗粒物源类样品,分析了其质量浓度和多种化学成分,包括21种无机元素、5种无机水溶性离子以及有机碳和元素碳等,并据此构建了杭州市PM2.5和PM10的源与受体化学成分谱;用化学质量平衡(CMB)受体模型解析其来源。结果表明,杭州市PM2.5和PM10污染较严重,其年均浓度分别为77.5μg/m3和111.0μg/m3;各主要源类对PM2.5的贡献率依次为机动车尾气尘21.6%、硫酸盐18.8%、煤烟尘16.7%、燃油尘10.2%、硝酸盐9.9%、土壤尘8.2%、建筑水泥尘4.0%、海盐粒子1.5%。各主要源类对PM10贡献率依次为土壤尘17.0%、机动车尾气尘16.9%、硫酸盐14.3%、煤烟尘13.9%、硝酸盐粒8.2%、建筑水泥尘8.0%、燃油尘5.5%、海盐粒子3.4%、冶金尘3.2%。  相似文献   

12.
于2017年对浦东城区和郊区大气PM2.5中的重金属特征和来源进行了分析。结果表明,K、Fe、Na、Ca、Mg、Al等矿物元素为浦东新区PM2.5中含量最高的金属元素,其中K的年均值为297.3 ng/m^3。浦东城区的不同元素在季节变化上呈现较为不同的变化规律,郊区的金属元素值大部分呈现春季先逐月下降,在夏、秋季有起伏波动,在10月之后逐渐上升;沙尘+道路源+建筑扬尘、煤燃烧、工业排放、金属冶炼、船舶排放、海盐+垃圾焚烧+生物质燃烧为浦东城区PM2.5中重金属元素的6大类主要来源。其中沙尘+道路源+建筑扬尘对Ca的贡献率为82.7%,煤燃烧对As的贡献率为86.6%,工业排放对SO4^2-的贡献率达到65.9%,金属冶炼对Cr的贡献率为75.7%,船舶排放对V的贡献率为97.5%、海盐+垃圾焚烧+生物质燃烧对Cl^-的贡献率为93.0%。煤燃烧和金属冶炼主要来自于西部方向。船舶排放分布在长江口及其延伸带。浦东新区PM2.5中重金属元素的质量浓度与本地源排放强度、外界传输和大气扩散条件均有密切关系。  相似文献   

13.
Airborne particulate matter, suspected to induce adverse effects on human health, have been one of the most important concerns regarding recent air pollution issues in Japan. To characterize regional and seasonal variations in emission sources of fine airborne particulate matter (d < 2 microm), monthly samples (n = 36 for each site) were collected at urban (Tokyo), suburban (Maebashi), and mountainous (Akagi) sites in Japan from April 2003 to March 2006. Multielement analysis of chemical species (Na, Al, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sb, and Pb) was performed by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry. The combined source receptor model, which consists of positive matrix factorization and chemical mass balance, determined the contributions of nine emission sources (local and continental soils, road dust, coal and oil combustion, waste incineration, steel industry, brake wear, and diesel exhaust) to the observed elemental concentrations. Large regional differences were identified in the source contributions among the observational sites. Diesel exhaust was identified as the most significant source (70% of identified contributions) at the urban site. Local and continental soils, coal combustion, and diesel exhaust were intricately assigned (20-30% each) to the suburban site. Continental soil was the predominant source (65%) at the mountainous site. Respective significant source contributions dominated the seasonal variations of total elemental concentrations at each site. These results suggest that a better understanding of the regional and seasonal characteristics of impacting emission sources will be important for improving regional environments.  相似文献   

14.
采用单颗粒气溶胶飞行时间质谱仪(Single Particle Aerosol Mass Spectrometer,SPAMS)对西安市大气矿尘颗粒物进行连续12 d在线分析,共采集到107 425个同时含有正负质谱信息的矿尘颗粒,矿尘颗粒物占PM_(2.5)样本数的8.44%。结果表明,矿尘颗粒物的正离子碎片成分以Na~+、K~+、Al~+、Ca~+、CaO~+、Fe~+为主,同时还含有Pb~+等,负离子碎片成分以NO~-_2和NO~-_3为主,另外还含有HSO~-_4、SiO~-_3、HSiO~-_3、H(NO_3)~-_2等。在西安市大气细颗粒物中,矿尘颗粒物中贡献较大的几类(如含钙、含铁、铁氧颗粒物等)大多是老化的成分。将观测阶段采集到的矿尘颗粒纳入本地污染源谱进行来源分析,其主要来源为扬尘源、工业源、燃煤源和汽车尾气源等。  相似文献   

15.
Metallic elements (As, Be, Ca, Cd, Co, Cr, Fe, K, Mn, Ni, Pb, Sb, Se, and Zn) in PM10 aerosols were determined at urban and industrial sites, which are affected by traffic and residential sources, metallurgical activity, and petrochemical and steel works. The effect of the long-range transported Asian Dust on the metal content of aerosols was also examined. At the urban sampling site, concentrations of As, Cd, Pb, Se, and Zn were assigned to road traffic and combustion sources, Ca and Fe to soil dust sources from long-range transported Asian Dusts, and Cr and Ni to metallurgical sources transported from the nearby industrial complex, based on Principal Component Analysis (PCA). Enhanced Cr and Ni concentrations at the metallurgical industrial site suggest that local emissions from metal-assembly facilities and manufacture of alloys contributed to elevated levels of those metals. We also observed that petrochemical activities contributed to increased levels of Sb and Zn. When Asian Dust events occurred, Ca, Fe, K, and Zn concentrations dramatically increased compared to values without the Asian Dust. Two different types of Asian Dust events were observed. For the Asian Dust event 1 (4/1/2007), the Fe and K concentrations were much higher by a factor of 2–3 than those for the Asian Dust event 2 (3/2/2008), while As, Mn, and Zn concentrations were significantly higher on the Asian Dust event 2. Backward trajectory analysis showed that for the Asian Dust event 2, the air mass had passed over the heavily industrialized zones in China during long-range transport to the current sampling site, suggesting that the As, Mn, and Zn may have originated from industrial sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号