首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
于2018年1,7和11月对苏北灌河口典型介质中多环芳烃(PAHs)的污染现状进行了调查。采用气相色谱-质谱联用仪(GC-MS)对水样、沉积物、植株和生物样品中16种PAHs富集组成特征及生态风险进行分析。结果表明,水相,悬浮颗粒物和沉积物中PAHs平均值均为枯季(1 998 ng/L, 2 987 ng/g, 1 056 ng/g)高于洪季(1 698 ng/L, 630 ng/g, 558 ng/g);不同季节水相、悬浮颗粒物和沉积物中均以2+3环PAHs为主;水相中苯并[a]蒽(BaA)、[艹屈](CHR)、苯并[b+k]荧蒽(B[b+k]FA)质量浓度高于美国环保署(US EPA)推荐的水质量标准,悬浮颗粒物和沉积物中芴(FL)和菲(PHE)对水生生物可能存在不利影响;互花米草和芦苇的落叶效应使得沉积物中PAHs质量分数高于光滩;芦苇根系沉积物和互花米草根系沉积物中PAHs的组成差异较大;成熟期(11月)蟹体内PAHs平均质量分数远高于生长期(7月),蟹体内更易富集低环数(2+3环)PAHs。  相似文献   

2.
广东省南海市主干道气溶胶中多环芳烃(PAHs)的研究   总被引:1,自引:0,他引:1  
气溶胶采样点位于广东省南海市桂江路边缘及两侧 ,采集时间为 2 4 h,连续采集三天。使用仪器为国产大体积采样器。同时在公园内设点采样 ,以作背景研究。样品经超声波抽提和层析柱分离得到正构烷烃、芳烃 (AHs)和极性组分等三种有机组分。对 PAHs进行 GC MS分析 ,气溶胶中具有较高含量的芴、菲、蒽、荧蒽、芘、苯并 [a]蒽、、苯并 [b]荧蒽、苯并 [k]荧蒽、苯并 [a]芘、茚并 [1 ,2 ,3-cd]芘、二苯并 [a,h]蒽、苯并 [g,h,i]等。通过 TSP研究认为 ,主干道的机动车排放和扬尘是气溶胶的主要来源 ,气候改变也是 TSP变化的另一重要因素。  相似文献   

3.
气溶胶采样点位于广州近郊主干道(广佛公路)边缘及两侧.采样分两种时间类型,一种为白天和夜晚分别采样,另一种为连续24h采样,连续采集三天,以作对比研究.使用仪器为国产大体积采样器.样品经超声波抽提和层析柱分离得到正构烷烃、芳烃(AHs)和极性组分等三种有机组分.对PAHs进行GC-MS分析,气溶胶中具有较高含量的芴、菲、蒽、荧蒽、芘、苯并[a]蒽、茬、苯并[b]荧蒽、苯并[]荧蒽、苯并[a]芘、茚并[1,2,3一cd]芘、二苯并[a,h]蒽、苯并[g,h,i]苝等.通过TSP研究认为,主干道的机动车排放和扬尘是气溶胶的主要来源,多环芳烃从机动车排放出后在迁移扩散过程中因质量数差异而发生分离效应.通过对比可知,该区域测点多环芳烃有机污染物极大程度地高出环境背景区.  相似文献   

4.
比较加压液体萃取法、超声波辅助萃取技术和微波辅助提取技术对公园地表土中多环芳烃的提取效率,并对目标化学成分进行分析鉴定。以超高效液相色谱-三重四极杆质谱作为分析方法,共分离检测出16种多环芳烃类化合物,分别为萘、苊、苊烯、氟、菲、蒽、荧蒽、芘、苯并[a]蒽、艹屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、二苯并[a,h]蒽、茚并[1,2,3-cd]芘和苯并[ghi]苝。结果表明:加压液体萃取法、超声波辅助萃取技术和微波辅助提取技术均可以有效提取公园地表土中多环芳烃类成分。超高效液相色谱-质谱联用技术可以有效地分析公园地表土中多环芳烃类成分。  相似文献   

5.
对淮安市5个区域土壤中多环芳烃(PAHs)污染状况进行了调查和分析,结果表明:被调查区域土壤中PAHs的平均质量比为1 641 μg/kg,城市附近区域--淮海南路旁农田、大运河畔城南农田、北京新村土壤中PAHs的质量比最高,分别为3 421 μg/kg、1 730 μg/kg和1 779 μg/kg,其污染特征因子为苊、菲、荧蒽、(艹屈)、茚并[1,2,3-c,d]芘、苯并[g,h,I]苝等;远离城市的区域--洪泽湖畔农田、洪泽湖大墩岛农田土壤中PAHs质量比较低,分别为716.3 μg/kg、560.9 μg/kg,污染特征因子为芴、苊、菲、(艹屈)等.  相似文献   

6.
中国表层水体沉积物中多环芳烃源解析及评价   总被引:3,自引:2,他引:1  
采用索氏提取气相色谱-质谱法测定中国6个重点水体表层沉积物中16种多环芳烃的含量。各化合物含量范围分别为长江6.20~163 ng/g、淮河7.90~249 ng/g、海河12.1~401 ng/g、松花江5.75~152 ng/g、太湖29.1~2 810 ng/g和滇池19.1~795ng/g;16种多环芳烃的总量分别为:长江1 147 ng/g、淮河1 723 ng/g、海河2 595 ng/g、松花江793 ng/g、太湖12472 ng/g、滇池3 714 ng/g,属中等污染水平。利用特征分子比值法分析结果表明6条水体表层沉积物中PAHs均可能以燃料(包括柴油、汽油、煤、木材)燃烧以及焦化污染为主。淮河和滇池还可能存在轻微石油泄漏污染。利用沉积物质量基准法(SQGs)和沉积物质量标准法分别对6条水体表层沉积物中多环芳烃的风险评估表明严重的多环芳烃生态风险在这些水体表层沉积物中不存在,但长江、淮河、松花江、海河均可能存在一定的潜在风险,负面生物毒性效应会偶尔发生,风险主要来源于荧蒽和菲。太湖和滇池水体中存在的潜在多环芳烃风险种类较多,风险主要来源于菲、荧蒽、芘、苯并(a)蒽、苊和蒽,对水生生物毒性效应较高,有必要进行更深入细致的调查研究高风险区域底栖生物的受损状况、污染来源和途径,以制定合理的污染控制对策。  相似文献   

7.
兰州市土壤中PAHs和PCBs的分布特征及风险评价   总被引:2,自引:0,他引:2  
通过采集兰州市各功能区表层土壤样品,分析土壤中PAHs和PCBs的分布特征及潜在风险。结果表明,兰州市土壤中16种PAHs的平均质量比为5 734μg/kg,其中7种致癌芳烃的平均质量比为276μg/kg;18种PCBs的平均质量比为45.9μg/kg,其中7种指示性PCBs的平均质量比为10.8μg/kg。风险评价结果表明,除苊为高生态风险外,兰州市土壤中PAHs其他组分和PCBs均处于低中生态风险。16种PAHs的毒性当量浓度为59.9μg/kg,主要贡献者为苯并[a]芘和苯并[b]荧蒽;7种指示性PCBs的毒性当量浓度为1.96×10~(-4)μg/kg,主要贡献来源为PCB138和PCB118。  相似文献   

8.
分析了隧道沥青摊铺过程环境空气中的TSP及多环芳烃质量浓度。TSP用膜法,中流量采样器采样15 min,重量法分析;超声波萃取,高效液相色法分析多环芳烃。结果表明,摊铺机周围空气中TSP超过8 mg/m3,道路空气中TSP超过3 mg/m3;环境空气中苊烯等12种多环芳烃均有检出,苊烯和艹屈质量浓度较高,苯并[a]芘和二苯并[a,h]蒽质量浓度较低。苯并[a]蒽、苯并[a]芘和二苯并[a,h]蒽超标,对人体健康危害较大。建议加强相关行业PAHs的排放水平及其健康风险研究,制定相关限值标准和沥青摊铺过程环境空气的沥青烟监测方法标准。  相似文献   

9.
以江苏省某大型化工企业周边居民区为研究区域,调查企业主导风的下风向2 km范围内的居民区以及对照区积尘中多环芳烃(PAHs)含量,对16种PAHs污染分布和特征进行研究,并评估积尘PAHs通过暴露途径对人群健康风险。结果表明:居民区积尘中16种PAHs全部检出,污染区∑PAHs均值为2 294μg/kg,明显高于对照区145μg/kg;污染区7个测点中有6个测点苯并(a)芘出现超标,超标倍数为0. 17~2. 5倍;所测的16种PAHs化合物中蒽、荧蒽、芘、、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘浓度相对较高;通过PAHs主成分分析和特征比值判断,不完全燃烧源对积尘中PAHs贡献率达77. 4%,污染区PAHs来源呈现石油燃烧、煤燃烧以及石油源的复合污染特征,对照区PAHs主要来源为煤的不完全燃烧;以苯并(a)芘毒性等效浓度进行风险评估,污染区致癌风险值明显高于对照区,儿童摄入PAHs风险总体高于成人;对照区儿童和成人致癌风险均小于1×10~(-6),不存在致癌风险;污染区儿童和成人平均致癌风险值分别为3. 95×10~(-6)、2. 65×10~(-6),在可接受范围内,但存在潜在致癌风险。  相似文献   

10.
建立了快速、简便测定城市污泥中4种主要PAHs污染物(菲、荧蒽、芘、苯并[α]芘)含量的检测方法。利用Qu ECh ERS提取方法,样品经乙腈并以超声波辅助提取,提取液过0.22μm滤膜后,采用气相色谱-质谱法对4种物质进行测定。对QuEChERS萃取条件及超声时间进行了优化,确立最优试验条件,比较建立的萃取方法与传统索氏提取方法对加标样品中4种PAHs的萃取效率。结果表明,4种PAHs得到较好的分离效果,方法检出限为0.27~0.49μg/kg,相对标准偏差为2.8%~8.6%(n=7),加标回收率为81.9%~116.3%,对菲、荧蒽、芘、苯并[α]芘提取效率与索氏萃取方法相当。运用该方法对西安某污水处理厂的原污泥和堆肥处理后污泥进行检测,4种分析物均有检出。该方法具有操作简便、灵敏、环保等特点,适用于城市污泥中菲、荧蒽、芘、苯并[α]芘的定性定量分析。  相似文献   

11.
The contamination of semi-volatile organic compounds (SVOCs) in the surface sediments of the Guan River Estuary, China was fully investigated. Total concentrations of 56 species of SVOCs ranged from 132 to 274 ng/g with an average of 186 ng/g (dry weight). Polycyclic aromatic hydrocarbon (PAH) concentrations were positively correlated with clay content and negatively correlated with sediment grain size. Source identification indicated that PAHs originated mainly from pyrolytic sources. However, intense ship traffic in the estuary may provide sources of petrogenic PAHs. Organochlorine pesticides (OCPs) mainly originated from direct input of dichlorodiphenyltrichloroethanes (DDTs) during some industrial processes. The SVOC concentrations were also compared with International Sediments Quality Guidelines and Sediments Quality Criteria, and the results indicated that negative biological impacts may originate from high concentrations of FLO, p,p′-DDE, and total DDTs.  相似文献   

12.
Blue mussels (Mytilus edulis) and sediments collected from 1991 to 2005 from New Bedford Harbor (NBH), MA, were analyzed for two polycyclic musks (HHCB or Galaxolide® and AHTN or Tonalide®), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs). HHCB and AHTN were found in mussel tissues at mean concentrations of 836 and 376 ng/g lipid weight (lw), respectively, which were two- to seven-fold higher than those found at a reference site. Mean concentrations of HHCB and AHTN in NBH sediments were 12 and 6.3 ng/g dry weight (dw), respectively. Four- and five-ringed PAHs, such as phenanthrene, anthracene, fluoranthene, and pyrene, collectively accounted for 61 % of the ∑PAHs concentrations in mussels from NBH. Mean ΣPCB concentrations in mussels from upper and lower NBH were 942 and 182 μg/g lw, respectively, and were dominated by tetra- and penta-chlorobiphenyl congeners, collectively accounting for 61 % of the ΣPCB concentrations. The mean concentration of ∑PBDEs in mussels from NBH was 277 ng/g lw, and no significant difference existed in the concentrations between upper and lower NBH. DDTs were the major OCP found in mussels, found at a mean concentration of 778 ng/g lw. The concentrations of HHCB, AHTN, ΣPBDEs, ΣPAHs, and DDTs in mussels decreased significantly (r 2?≥?0.56, p?≤?0.052) from 1991 to 2005. The concentrations of PCBs and chlordanes did not exhibit a decreasing trend in mussel tissues (r 2?<?0.50; p?>?0.076) from 1991 to 2005. Based on the temporal trends in the concentrations of HHCB, AHTN, ∑PAHs, and ∑PBDEs found in mussels from NBH, it was estimated that between 5.5 and 12 years were required for the concentrations of these compounds to decrease by half (i.e., environmental halving time) of the levels found in 1991.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) in 24 surface sediments from the Dahuofang Reservoir (DHF), the largest man-made lake in Northeast China, were measured. The results showed that the concentrations of 16 US EPA priority PAHs in the sediments ranged from 323 to 912 ng/g dry weight with a mean concentration of 592?±?139 ng/g. The PAH source contributions were estimated based on positive matrix factorization model. The coal combustion contributed to 31 % of the measured PAHs, followed by residential emissions (22 %), biomass burning (21 %), and traffic-related emissions (10 %). Pyrogenic sources contributed ~84 % of anthropogenic PAHs to the sediments, indicating that energy consumption release was a predominant contribution of PAH pollution in DHF. Compared with the results from the urban atmospheric PAHs in the region, there was a low contribution from traffic-related emissions in the sediments possibly due to the low mobility of the traffic-related derived 5+6-ring PAHs and their rapid deposition close to the urban area.  相似文献   

14.
PAHs were measured in sediments and mussels (Mytilus chilensis) from Carboneros and Puerto Claro, located in Corral Bay, Valdivia. According to the ratio of phenanthrene/anthracene and fluoranthene/pyrene concentrations, these sites are medium polluted with PAHs originating mainly from pyrolytic sources. Fluoranthene was the major component measured in mussels (3.1-390 ng g(-1) dry weight) and sediments (6.9-74.1 ng g(-1) dry weight). In general, mussels were mainly exposed to the dissolved fraction of the lower molecular weight PAHs (tri- and tetra-aromatics) while the higher molecular ring systems (penta- and hexa-aromatics) were more bioavailable to sediments. Mussel PAHs content was relatively constant, with the exception of the 1999 summer season (March), when higher concentration values were found in both sites; however, PAHs residues in sediments showed a temporal variation.  相似文献   

15.
The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was investigated in Gomti River, a major tributary of the Ganga river (India). A total of 96 samples (water and sediments) were collected from eight different sites over a period of 2 years and analysed for 16 PAHs. The total concentrations of 16 PAHs in water and bed sediments ranged between 0.06 and 84.21 ??g/L (average (n?=?48), 10.33 ± 19.94 ??g/L) and 5.24?C3,722.87 ng/g dw [average (n?=?48): 697.25 ± 1,005.23 ng/g dw], respectively. In water, two- and three-ring PAHs and, in sediments, the three- and four-ring PAHs were the dominant species. The ratios of anthracene (An)/An + phenenthrene and fluoranthene (Fla)/Fla + pyrene were calculated to evaluate the possible sources of PAHs. These ratios reflected a pattern of pyrolytic input as a major source of PAHs in the river. Principal component analysis, further, separated the PAHs sources in the river sediments, suggesting that both the pyrolytic and petrogenic sources are contributing to the PAHs burden. The threat to biota of the river due to PAHs contamination was assessed using effect range low and effect range median values, and the results suggested that sediment at some occasions may pose biological impairment.  相似文献   

16.
In this paper, the concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in biota (reed, grass, mussel, fish, and red-crowned crane) and sediments collected from seven locations in the Zha Long Wetland. PAHs were recovered from the sediments and biota by ultrasonic extraction and then analyzed by means of gas chromatography-mass spectrometry. The total PAH concentrations were 244–713 ng/g dw in sediments, 82.8–415 ng/g dw in plants and 207–4,780 ng/g dw in animals. The total sediment PAH concentrations were categorized as lower to moderate contamination compared with other regions of China and the world. In the plant samples, the accumulation abilities of reed roots and stems for PAHs were higher than those of grass roots. In addition, the concentration of individual PAHs in mussel muscles was the highest in all of the animal samples, followed by fish, feeding crane fetuses, and wild crane fetuses. Compositional analysis suggests that the PAHs in the sediments from the Zha Long Wetland were derived from incomplete biomass combustion. Risk assessment shows that the levels of PAHs in sediments are mostly lower than the effects range mean value (effects range mean), whereas only naphthalene in all sample sites was higher than the effects range low value. It is worthwhile to note that benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene and benzo(ghi)perylene were detected in crane fetal, which have potential carcinogenicity for organisms from the Zha Long Wetland.  相似文献   

17.
对黑潴河下游表层沉积物中16种多环芳烃(PAHs)的污染现状进行了调查研究。结果表明,表层沉积物中PAHs总量变化范围为41.2~129.3ng/g(平均值为83.7ng/g),PAHs的组成以5~6环PAHs组分为主。黑潴河下游沉积物中PAHs主要来源于周边地区化石燃料的高温燃烧。比较了基于不同方法建立的沉积物中PAHs环境基准值的差异,分析产生差异的原因,选择生态效应区间法对黑潴河沉积物中的PAHs进行了生态风险评价。黑潴河下游PAHs生态风险较小,属PAHs低生态风险河道。  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Nansi Lake of China to investigate the spatial and temporal distribution characteristics. The concentrations of 16 kinds priority PAH compounds were determined by GC-MS method. And 210Pb isotope dating method was used to determine the chronological age of the sediment as well as the deposition rate. The results indicated that the total PAHs concentration ranges in surface and core sediment samples were 160 ~32,600 and 137 ~ 693 ng/g (dry wt.), respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm·year???1 and 0.237 g·cm???2·yr???1 and the sediment time of the collected core sample ranged from 1899 to 2000. The peak of PAH concentrations came at recent years. The source analysis showed PAHs mainly came from the contamination of low temperature pyrogenic processes, such as coal combustion. The PAHs concentrations were lower than ERL and LEL values for most collected samples. However, in several surface sediment samples especially in estuary sites, the PAHs concentrations were not only higher than ERL and LEL values, but also higher than ERM values.  相似文献   

19.
Sources, partitioning and toxicological risk of 15 priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments from drinking water sources of Taihu Lake, with an area of 2428 km(2) located in the most developed and populated area of China, were studied, and the results were compared with those in other lakes of China and the USA. Concentrations of the 15 PAHs in sediments ranged from 436.6 to 1334.9 ng g(-1) (dw). Gasoline combustion, coal combustion, diesel combustion from shipping and spillage of petroleum were apportioned to be the main sources of PAHs in this area by principal component analysis, which contributed 35.19%, 26.43%, 25.41% and 12.97% to the PAH sources estimated by further multiple linear regression. Levels of PAHs in sediments were negatively correlated with contents of clay and fine silt (<16 μm), while positively with contents of medium silt, coarse silt and sand (>16 μm). Humin with size larger than 16 μm contained the largest part of the burden of PAHs in sediments, but the specific partitioning domain (bound humic acid, lipid or insoluble residue) depended on properties of organic matter reflected by optical absorbance at 465 and 665 nm. Total toxic benzo[a]pyrene equivalent (TEQ(carc)) of the carcinogenic PAHs in sediments varied from 31.8 to 209.3 ngTEQ(carc) g(-1). Benzo[a]pyrene and dibenzo[a,h]anthracene contributed 45.36 and 25.31% to total TEQ(carc), posing high toxicological risk to this area.  相似文献   

20.
One hundred and fourteen surface sediments were collected from the Maozhou River Watershed in Shenzhen, China from December 2009 to January 2010. Three individual chlorinated polycyclic aromatic hydrocarbons (ClPAHs), six individual brominated polycyclic aromatic hydrocarbons (BrPAHs), and five corresponding parent polycyclic aromatic hydrocarbons (PAHs) were determined. The concentration of 9-chlorophenanthrene was the highest ranging from 0.51-289 ng g(-1) (average, 16.5 ng g(-1)). For BrPAHs, the concentration of 2-bromofluorene was the highest ranging from 0.31-266 ng g(-1) (average, 35.3 ng g(-1)). No correlation was observed between the concentrations of ClPAHs and parent PAHs in surface sediments. In addition, there was no correlation between 1-bromopyrene, 7-bromobenz(a)anthracene and 9,10-dibromoanthracene, and corresponding parent PAHs. However, a significant correlation was found between 9-bromophenanthrene and phenanthrene (p < 0.01), between 9-bromoanthracene and anthracene (p < 0.05), and between 2-bromofluorene and fluorene (p < 0.05). Six fly ash samples collected from one of the municipal domestic waste incineration plants in Shenzhen were also analyzed for source identification. The concentration of 7-bromobenz(a)anthracene was the highest, ranging from 3.21-4.08 ng g(-1). In addition, 2-bromofluorene was not detected in all the fly ash samples. No correlation was found between the concentrations of Cl-/BrPAHs and corresponding parent PAHs in fly ashes. We also examined the relationship between the levels of Cl-/BrPAHs in surface sediments and the urbanization process. Our results suggested the levels of individual Cl-/BrPAHs congeners presented a similar increasing trend with the increasing urbanization level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号