首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Chemical characteristics of 72 groundwater samples collected from Midyan Basin have been studied to evaluate major ion chemistry together with the geochemical and weathering processes controlling the water composition. Water chemistry of the study area is mainly dominated by Na, Ca, SO4, and Cl. The molar ratios of (Ca?+?Mg)/total cations, (Na?+?K)/total cations, (Ca?+?Mg)/(Na?+?K), (Ca?+?Mg)/(HCO3?+?SO4), (Ca?+?Mg)/HCO3, and Na/Cl reveal that water chemistry of the Midyan Basin is controlled by evaporite dissolution (gypsum and/or anhydrite, and halite), silicate weathering, and minor contribution of carbonate weathering. The studied groundwater samples are largely undersaturated with respect to dolomite, gypsum, and anhydrite. These waters are capable of dissolving more of these minerals under suitable physicochemical conditions.  相似文献   

2.
The present study discusses ion sources and assesses the chemical quality of groundwater of Doon Valley in Outer Himalayan region for drinking and irrigational purposes. Valley is almost filled with Doon gravels that are main aquifers supplying water to its habitants. Recharged only by meteoric water, groundwater quality in these aquifers is controlled essentially by chemical processes occurring between water and lithology and locally altered by human activities. Seventy-six water samples were collected from dug wells, hand pumps and tube wells and were analysed for their major ion concentrations. The pH is varying from 5.6 to 7.4 and electrical conductivity from 71 to 951 μmho/cm. Groundwater of Doon valley is dominated by bicarbonate contributing 83% in anionic abundance while calcium and magnesium dominate in cationic concentrations with 88%. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The high ratio of (Ca + Mg)/(Na + K), i.e. 10, low ratio of (Na + K)/TZ+, i.e.0.2 and also the presence of carbonate lithology in the northern part of valley, is indicative of carbonate dissolution as the main controlling solute acquisition process in the valley. The low abundance of silica content and high HCO?/H?SiO? ratio also supports carbonate dissolution and less significant role of silicate weathering as the major source for dissolved ions in Doon Valley. The analytical results computed for various indices show that water is of fairly good quality, although, hard but have moderate dissolved solid content. It is free from sodium hazard lying in C?-S? and C?-S? class of USSL diagram and in general suitable for drinking and irrigation except few locations having slightly high salinity hazard.  相似文献   

3.
Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO3, HCO3, Cl and SO4). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C3S1 in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C2S1 to C4S2 in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001).  相似文献   

4.
The hydrogeochemical parameters for groundwater samples of the Varanasi area, a fast-urbanizing region in India, were studied to evaluate the major ion chemistry, weathering and solute acquisition processes controlling water composition, and suitability of water quality for domestic and irrigation uses. Sixty-eight groundwater samples were collected randomly from dug wells and hand pumps in the urban Varanasi area and analyzed for various chemical parameters. Geologically, the study area comprises Quaternary alluvium made up of an alternating succession of clay, silty clay, and sand deposits. The Total dissolved solids classification reveals that except two locations, the groundwater samples are desirable for drinking, and all are useful for irrigation purposes. The cationic and anionic concentrations indicated that the majority of the groundwater samples belong to the order of Na > Ca > Mg > K and HCO3 > Cl > SO4 types, respectively. Geochemical classification of groundwater based on the Chadha rectangular diagram shows that the majority (81%) of groundwater samples belong to the calcium?Cbicarbonate type. The HCO3/ (HCO3 + SO4) ratio (0.87) indicates mostly carbonic acid weathering process due to presence of kankar carbonate mixed with clay/fine sand. The high nitrate concentration (>45?mg/l) of about 18% of the groundwater samples may be due to the local domestic sewage, leakage of septic tanks, and improper management of sanitary landfills. In general, the calculated values of sodium adsorption ratio, percent sodium, residual sodium carbonate, and permeability index indicate good to permissible use of water for irrigation, and only a few locations demand remedial measures for better crop yields.  相似文献   

5.
The aim of this study was to determine the origin and quality of waters in Troia. For this purpose total of 25 water samples including 2 springs, 14 surfaces and 9 groundwaters, were collected at eight different times. Global positioning system (GPS) was used to determine to coordinates of sampling points. The concentration of 6 minor elements (B, Cu, F, Fe, Pb and Zn), 9 major anions and cations (Na(+), Ca(2+), K(+), Mg(2+), SO(4)(2-), PO(4)(3-), HCO(3)(-), Cl(-) and, CO(3)(2-)) were determined by spectrometric, colorimetric and volumetric methods. Water pH, EC, DO, ORP and TDS were measured in situ using probes. The data showed that the concentrations of most of minor elements were below the EPA and TSE limits except Pb which ranged between 0.001 and 4.832 mg L(-1). Statistically significant relationships (P<0.01 and r>0.70) were observed between Fe and Cu, Cu and K(+), Cu and Ca(2+), B and Na(+), Na(+) and K(+). Assessing the water based on irrigation using Wilcox model showed that some well waters were not suitable for irrigation. Troia water was found to be highly corrosive and the average corrosion coefficients varied from 0.5 to 4.6. According to the Piper and Schoeller diagrams results, the water in Troia was classified as mixed water type.  相似文献   

6.
Groundwater quality assessment has been carried out based on physicochemical parameters (pH, EC, TDS, CO(3), HCO(3), Cl, SO(4), PO(4), NO(2), Ca(+2), Mg(+2), Na(+) and K(+)) and metal concentration in the Rameswaram Island from 25 bore wells. The Langelier Saturation Index of the groundwater shows positive values (63% samples) with a tendency to deposit the CaCO(3) in the majority of water samples. Scatter plot (Ca + Mg/HCO(3)) suggests carbonate weathering process, which is the main contributor of Ca(2+), Mg(2+) and HCO(3) ions to the water. Gibbs diagram suggests rock-water interaction dominance and evaporation dominance which are responsible for the change in the quality of water in the study area. NaCl and mixed CaNaHCO(3) facies are two main hydrogeochemical facies of groundwater. Mathematical calculations and graphical plots of geochemical data reveal that the groundwater of Rameswaram Island is influenced by natural weathering of rocks, anthropogenic activities and seawater intrusion due to over exploitation. Weathering and dissolution of carbonate and gypsum minerals also control the concentration of major ions (Ca(+2), Mg(+2), Na(+) and K(+)) in the groundwater. The nutrient concentration of groundwater is controlled to a large extent by the fertilizers used in agricultural lands and aquaforms. Comparison of geochemical data shows that majority of the groundwater samples are suitable for drinking water and irrigation purposes.  相似文献   

7.
Chemical Composition of Bottled Water in Saudi Arabia   总被引:1,自引:0,他引:1  
Fourteen domestic and seven imported bottled water brands were analysed in Saudi Arabia for various physico-chemical water quality parameters. The results of the analysis were compared with the drinking water standards set by Saudi Arabia and World Health Organization. The levels of different physico-chemical parameters like TDS, Ca, Mg, Na, K, NO3, Cl and SO4 of all local and imported bottled water brands met the different drinking water standards. Fluoride was found below the Saudi Arabian Standard Organization recommended limits in two of the local brands whereas fluoride levels in all of the imported brands were below the recommended values. In one imported brand, pH was found not conforming to the recommended standards. The concentrations of trace metals in all brands were within the drinking water standards. Comparison of the study results with the reported label values indicated good agreement with stated pH values but considerable variation for Ca, Mg, and Na in the local brands and comparatively low variation in the imported brands. Low F and SO4 variations were found in the local brands and comparatively high SO4 variation in the imported brands.  相似文献   

8.
Asbestos fibers and metals in drinking water are of significant importance to the field of asbestos toxicology. However, little is known about asbestos fibers and metals in drinking water caused by naturally occurring asbestos. Therefore, concentrations of asbestos fibers and metals in well and surface waters from asbestos and control areas were measured by scanning electron microscopy (SEM), inductively coupled plasma (ICP) optical emission spectrometer, and ICP–mass spectrometry in this study. The results indicated that the mean concentration of asbestos fibers was 42.34 millions of fibers per liter by SEM, which was much higher than the permission exposure level. The main compositions of both asbestos fibers in crocidolite mineral and in drinking water were Na, Mg, Fe, and Si based on energy dispersive X-ray analysis. This revealed that the drinking water has been contaminated by asbestos fibers from crocidolite mineral in soil and rock. Except for Cr, Pb, Zn, and Mn, the mean concentrations of Ni, Na, Mg, K, Fe, Ca, and SiO2 were much higher in both surface water and well waters from the asbestos area than in well water from the control area. The results of principal component and cluster analyses indicated that the metals in surface and well waters from the asbestos area were significantly influenced by crocidolite mineral in soil and rock. In the asbestos area, the mean concentrations of asbestos fibers and Ni, Na, Mg, K, Fe, Ca, and SiO2 were higher in surface and well waters, indicating that asbestos fibers and the metals were significantly influenced by crocidolite in soil and rock.  相似文献   

9.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO(3), Cl, F,SO(4), NO(3), PO(4),CO(3), HCO(3), and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium.  相似文献   

10.
Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-)?>?[Formula: see text]?>?[Formula: see text], Na(+)?>?Mg(2+)?>?Ca(2+)?:?[Formula: see text]?>?Cl(-), and Na(+)?>?Mg(2+)?>?Ca(2+)?:?Cl(-)?>?[Formula: see text]?>?[Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality.  相似文献   

11.
National data from the hydrological network for 38 rivers out of 25 watersheds were used to detect spatial and temporal trends in water quality and quantity characteristics between 1995 and 2002. Assessment of water quality and quantity included flow rate, water temperature, pH, electrical conductivity, sodium adsorption rate, Na, K, Ca+Mg, CO3, HCO3, Cl, SO4, and boron. Among the major ions assessed on a watershed basis, Turkish river waters are relatively high in Ca+Mg, Na and HCO3, and low in K and CO3. The watersheds in Turkey experienced a general trend of 16% decrease in flow rates between 1995 and 2002 at a mean annual rate of about 4 m3 s?1, with a considerable spatial variation. Similarly, there appeared to be an increasing trend in river water temperature, at a mean annual rate of about 0.2°C. A substantial proportion of watersheds experienced an increase in pH, in particular, after 1997, with a maximum increase from 8.1 to 8.4 observed in Euphrates (P?R 2 values in accounting for variations of pH and water temperature only. The findings of the study can provide a useful assessment of controls over water quality and quantity and assist in devising integrated and sustainable management practices for watersheds at the regional scale in Turkey.  相似文献   

12.
An investigation covering 12 districts of Baghdad city was conducted over 2 yr to monitor the effect of domestic storage practice on the quality of drinking water. Water storage tanks are widely used in Iraq as an additional water source. Tap and stored waters were tested for their chemical constituents i.e. Ca, Mg, Na, K, Cl, Zn, Fe, Pb, Cd, and total hardness (T.H.). All the tested elements were within the permissible limits. However, statistical analysis showed a significant variation between the different districts for T.H., Cu, Mg and chloride for both tap and stored waters. Seasonal variations have a significant effect on the levels of some elements. The quality of stored water was not affected by storage practice. Zinc, Pb and Fe were the only elements that showed some variation in the stored waters. This was attributed to the effects of corrosion of the tank metal and the migration of metals from the distribution system.  相似文献   

13.

Regime shifts of major salinity constituents (Ca, Mg, Na, K, SO4, Cl, HCO3, and NO3) in the lower Salinas River, an agricultural ecosystem, can have major impacts on ecosystem services central to continued agricultural production in the region. Regime shifts are large, persistent, and often abrupt changes in the structure and dynamics of social-ecological systems that occur when there is a reorganization of the dominant feedbacks in the system. Monitoring information on changes in the system state, controlling variables, and feedbacks is a crucial contributor to applying sustainability and ecosystem resilience at an operational level. To better understand the factors driving salinization of the lower Salinas River on the central coast of California, we examined a 27-year record of concentrations of major salinity constituents in the river. Although limited in providing an understanding of solute flux behavior during storm events, long-term “grab sampling” datasets with accompanying stream discharges can be used to estimate the actual history of concentrations and fluxes. We developed new concentration–discharge relationships to evaluate the dynamics of chemical weathering, hydrological processes, and agricultural practices in the watershed. Examinations of long-term records of surface water and groundwater salinity are required to provide both understanding and perspective towards managing salinity in arid and semi-arid regions while also enabling determination of the influence of external climatic variability and internal drivers in the system. We found that rock weathering is the main source of Ca, Mg, Na, HCO3, and SO4 in the river that further enables ion exchange between Ca, Mg, and Na. River concentrations of K, NO3, and Cl were associated with human activities while agricultural practices were the major source of K and NO3. A more direct anthropogenic positive trend in NO3 that has persisted since the mid-1990s is associated with the lag or memory effects of field cropping and use of flood irrigation. Event to inter-year scale patterns in the lower Salinas River salinity are further controlled by antecedent hydrologic conditions. This study underscores the importance of obtaining long-term monitoring records towards understanding watershed changes-of-state and time constants on the range of driving processes.

  相似文献   

14.
Tawa River is the biggest left bank tributary of the Narmada, the largest west-flowing river of the Indian peninsula. Central India enjoys a tropical climate, is highly urbanized, and the river flow is mostly controlled by monsoon; a large part of the population depend on rivers for their livelihood. Spatial and temporal variations in the hydrochemistry of the Tawa River were studied based on seasonal sampling along the course of the river and its tributaries. The study is important because not much data exist on small size rivers and the river processes spell out correctly in smaller basins. The monsoon season accounts for more than 70 % of river water flow. The basin is characterized by silicate lithology; however, water chemistry is controlled by carbonate-rich soils and other weathering products of the silicate rocks, as indicated by the high (Ca?+?Mg)/(Na?+?K) ratios (>3.8). The values of the Na-normalized ratios of Ca2+, Mg2+, and HCO3 ? suggest that both the carbonate and silicate lithology contribute to the hydrochemistry. On average, 42 % of HCO3 ? in the Tawa River water is contributed by silicate weathering and 58 % from carbonate lithology. The water remains undersaturated with respect to calcite during the monsoon and post-monsoon seasons and supersaturated during the pre-monsoon season. A significant influence of mining in the basin and other industrial units is observed in water chemical composition.  相似文献   

15.
Temporal status and trends in water quality of Al-Wehda Dam, Jordan, from 2006 to 2012 indicate that the dam is subject to a combination of impacts from rainstorm and agricultural runoffs. It also revealed that mineral dissolution, sediment load, rainfall events, evaporation, and water-level fluctuation are the major contributors to variations in water quality. The water chemistry of the impounded Al-Wehda Reservoir showed that Na, Ca, Mg, HCO3, and Cl are the principal ions, reflecting the dominance of carbonate weathering, with some contribution of silicates. The pH values showed a cyclic pattern with highest values observed in the spring seasons. Total dissolved solids (TDS), Ca, Mg, and HCO3 are primarily related to leaching and evaporation, with elevated levels that occurred in the rainy winter months. In contrast, seasonal patterns in Na, K, Cl, and NH4–N contents showed decreased values in winter. Peaks in NO3–N observed in winter are strongly associated with agricultural runoff. Fluctuations in chlorophyll-a level were coincided with low ratio of total nitrogen (TN) to total phosphorus (TP). Seasonal variations in organic matter content were also apparent, with peaks that generally occurred in spring through early fall corresponding with high algal growth. On an annual basis, the vast majority of water quality data have generally declined, particularly, in 2011. However, it is not clear whether these decreases are related to change in management practices within the Yarmouk basin, or protective measures have been implemented. Comparison of in-lake and post-dam water quality from 2009 to 2011 showed variation in concentrations, where Ca, HCO3, NO3–N, Mg, and TDS showed relatively greater post-dam values than in-lake water, whereas pH, Na, Cl, K, COD, BOD5, and chlorophyll-a were consistently lower in post-dam water. This comparison emphasizes the importance of self-purification capacity of Al-Wehda Dam in reducing some contaminants.  相似文献   

16.
The levels of lead, cadmium, copper, zinc, aluminum, chromium, and iron in street dust, soil, and plants in the Jordanian petroleum refinery were determined using flame and graphite-furnace atomic absorption spectrophotometry. Major cations (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) and anions (F-, Cl-, NO3-, SO4(2-), and Br-) were also determined using suppression mode ion chromatography. Generally, higher levels of the heavy metals studied were found in street dust samples than in soil samples. On the other hand, except Cl-, and Li+ ions, other anions and cations showed higher concentrations in soil than in street dust samples. For plant samples, unwashed samples showed higher levels of heavy metals than their washed counterparts, indicating that dust fall is a source of heavy metal contamination.  相似文献   

17.
Selected trace metals were estimated by atomic absorption spectrometry in the water and soil samples collected from the remote region of Himalaya. The soil samples were analysed for soluble and acid extractable fraction of trace metals. In water samples, Ca, Na, Mg and K emerged as dominant contributors, whereas, Ca, Na, K, Mg, Fe and Pb were estimated at comparatively higher levels in the water extract of the soil. In case of acid extract of the soil samples, Ca, K, Fe, Mg, Mn and Na were found at elevated concentrations. Based on mean levels of the metals, following decreasing concentration order was observed in water samples: Ca > Na > Mg > K > Pb > Co > Cu > Zn > Mn > Cr > Fe > Cd > Li, however, in the acid extract of the soil, following order was noted: Ca > K > Fe > Mg > Mn > Na > Pb > Zn > Cr > Li > Cu > Co > Cd. The correlation study revealed appreciably diverse mutual relationships of trace metals in the water and soil samples. The multivariate cluster analyses exhibited divergent apportionment of trace metals in water and soil samples. Among the trace metals, Cd, Pb, Li, Zn, Cr, Cu, Mn and Co exhibited extreme to significant anthropogenic enrichment in the soil samples, while the rest of the metals were mostly contributed by the natural processes.  相似文献   

18.
In this study, the hydrochemical characteristics of shallow groundwater were analyzed to get insight into the factors affecting groundwater quality in a typical agricultural dominated area of the North China Plain. Forty-four shallow groundwater samples were collected for chemical analysis. The water type changes from Ca·Na-HCO3 type in grass land to Ca·Na-Cl (+NO3) type and Na (Ca)-Cl (+NO3+SO4) type in construction and facility agricultural land, indicating the influence of human activities. The factor analysis and geostatistical analysis revealed that the two major factors contributing to the groundwater hydrochemical compositions were the water-rock interaction and contamination from sewage discharge and agricultural fertilizers. The major ions (F, HCO3) and trace element (As) in the shallow groundwater represented the natural origin, while the nitrate and sulfate concentrations were related to the application of fertilizer and sewage discharge in the facility agricultural area, which was mainly affected by the human activities. The values of pH, total dissolved solids, electric conductivity, and conventional component (K, Ca, Na, Mg, Cl) in shallow groundwater increased from grass land and cultivated land, to construction land and to facility agriculture which were originated from the combination sources of natural processes (e.g., water-rock interaction) and human activities (e.g., domestic effluents). The study indicated that both natural processes and human activities had influences on the groundwater hydrochemical compositions in shallow groundwater, while anthropogenic processes had more contribution, especially in the reclaimed water irrigation area.  相似文献   

19.
Ali/(Ca + Mg) molar ratio in soil water has been used as an indicator to the effects of acid deposition on terrestrial ecosystems. However, the main factors controlling this ratio have not been well documented in southern and southwestern China. In this study, we presented the variation in inorganic aluminum (Ali) and Ali/(Ca + Mg) molar ratio in different sites and soil horizons based on two to three years monitoring data, and evaluated the main factors controlling Ali/(Ca + Mg) molar ratio using principle component analysis (PCA) and partial least square (PLS) regression. Monitoring data showed although Ali/(Ca + Mg) molar ratios in most soil water were lower than assumed critical 1.0, higher molar ratios were found in some soil water at TSP and LXH site. Besides acid loading, both soil properties and soil water chemistry affected the value of Ali/(Ca + Mg) molar ratio in soil water. Partial least square (PLS) indicated that they had different relative importance in different soil horizons. In A-horizon, soil aluminum saturation (AlS) had higher influence on Ali/(Ca + Mg) molar ratio than soil water chemistry did; higher soil aluminum saturation (AlS) led to higher Ali/(Ca + Mg) molar ratio in soil water. In the deeper horizons (i.e., B1-, B2- and BC-horizon), inorganic aluminum (Ali) in soil water had more and more important role in regulating Ali/(Ca + Mg) molar ratio. On regional scale, soil aluminum saturation (AlS) as well as cation exchange capacity (CEC) was the dominant factor controlling Ali/(Ca + Mg) molar ratio. This should be paid enough attention on when making regional acid rain control policy in China.  相似文献   

20.
An attempt has been made to understand the hydrogeochemical parameters to develop water quality index in Thirumanimuttar sub-basin. A total of 148 groundwater samples were collected and analyzed for major cations and anions. The domination of cations and anions was in the order of Na>Mg>Ca>K for cations and Cl>HCO3 >SO4 in anions. The hydrogeochemical facies indicate alkalis (Na and K) exceed alkaline earths (Ca and Mg) and strong acids (Cl and SO4) exceed weak acid (HCO3). Water quality index rating was calculated to quantify overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to effective leaching of ions, over exploitation of groundwater, direct discharge of effluents and agricultural impact. The overlay of WQI with chloride and EC correspond to the same locations indicating the poor quality of groundwater in the study area. SAR, Na%, and TH were noted higher during both the seasons indicating most of the groundwater locations not suitable for irrigation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号