首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
通过对含有臭氧发生器的动态校准仪发生的臭氧浓度进行多角度跟踪审查,对其臭氧浓度的复现性进行了评估。总体上,动态校准仪臭氧发生器发生的臭氧浓度存在较大漂移,复现性较差,与臭氧组件的稳定性有很大关系。建议参照美国的臭氧传递分级标准,把动态校准仪作为Level 4级别的传递标准,使用专门用于校准的臭氧分析仪作为Level 3级别的传递标准,在子站现场对动态校准仪和监测用臭氧分析仪进行标准传递,并适当增加传递频次。  相似文献   

2.
臭氧二级传递标准量值传递技术   总被引:3,自引:2,他引:1  
臭氧(O_3)二级传递标准对O_3三级传递标准进行量值传递,开展了对分析类型、发生类型等不同类型O_3三级传递标准的量值传递实验。分析类型O_3三级传递标准6组校准斜率的相对标准偏差Sm为0.19%、截距的标准偏差SI为0.25 nmol/mol;发生类型O_3三级传递标准6组校准的Sm为0.67%、SI为0.20 nmol/mol,均符合美国环保局O_3二级传递标准量值传递的评价指标:6组多点校准斜率的相对标准偏差Sm≤3.7%,截距的标准偏差SI≤1.5 nmol/mol。进一步对分析类型、发生类型O_3三级传递标准分别进行了6个月的量值传递时间稳定性考察,O_3三级传递标准新的斜率与最近6组斜率均值的比值为0.965~1.037,且新计算的斜率的相对标准偏差Sm为0.37%~1.87%,截距的标准偏差SI为0.20~0.52 nmol/mol,均符合美国环保局量值传递评价指标的要求,建议至少每6个月采用O_3二级传递标准开展一次量值传递。  相似文献   

3.
以国内监测系统在用的臭氧校准仪为二级传递标准对臭氧监测仪开展了实验室校准,通过计算单次校准所得校准曲线的斜率和截距,符合中国相关标准中关于臭氧监测仪的校准指标:多点校准所得校准曲线的斜率为0.95~1.05,截距为-5~5 nmol/mol。进一步对2台臭氧监测仪进行了稳定性测试,12个月内臭氧监测仪的斜率变化为0.976 05~1.008 42,截距变化为-0.669 00~0.577 93 nmol/mol,臭氧监测仪的斜率、截距均符合臭氧监测仪校准指标的要求。稳定性测试表明,TF 49i型臭氧监测仪和EC 9810型臭氧监测仪经校准后均可用于实验室内臭氧标准传递比对工作。实验中臭氧监测仪更换臭氧涤除器、仪器零件后校准曲线的斜率均有明显变化,建议更换耗材后需采用高浓度臭氧对臭氧监测仪进行饱和并再次校准。  相似文献   

4.
紫外光度法臭氧自动监测仪及其标准传递方法   总被引:7,自引:5,他引:2  
随着我国经济的快速增长和城市化进程的不断加速,以臭氧为主的光化学污染问题已成为大气环境保护领域关注的重点、热点问题。对臭氧进行自动监测是环境管理和科学研究的需要,文中介绍了臭氧自动监测仪和臭氧量值溯源体系,重点探讨了臭氧监测干扰因素及标准传递方法,并通过实验比较验证了带光度计的臭氧校准仪具有较好的输出稳定性。  相似文献   

5.
美国环境空气臭氧量值传递的经验与启示   总被引:3,自引:3,他引:0  
新修订的《环境空气质量标准》对环境空气中的臭氧监测提出了明确的要求,一套有效的臭氧量值传递体系已成为保证中国环境空气臭氧监测数据质量的生命线。为加强中国环境空气臭氧量值传递体系的建设,总结了美国环境空气臭氧量值传递体系及其相关的技术规范体系,简要介绍其臭氧量值传递体系各关键环节的质量控制工作要点,并提出了对中国环境空气臭氧量值传递体系建设的建议。  相似文献   

6.
大连市臭氧污染特征及典型污染日成因   总被引:1,自引:1,他引:0  
通过对大连市区10个空气监测子站的监测数据进行分析,探讨了大连市臭氧污染的时空分布、气象条件对臭氧污染的影响,对臭氧污染日进行了归类分析。结果表明,大连市臭氧污染主要出现在4—10月。在强紫外辐射、高温、低湿、低压和低风速的气象条件下,监测点位的臭氧浓度较高。臭氧污染日的日变化分为单峰型、双峰型和夜间持续升高型3种类型。通过对2015年的一次高浓度臭氧污染过程的气象条件、污染物浓度和污染气团轨迹进行分析,发现臭氧浓度在夜间持续升高现象与区域输送密切相关。  相似文献   

7.
随着社会经济的快速发展,我国臭氧污染日益严重,因此,研发出能定量评估气象条件对臭氧污染影响程度的诊断指数,成为提高和改善气象服务质量的重要任务之一。利用中国大陆地区2018年温度、总云量、风速、风向、相对湿度等气象场数据与臭氧浓度数据,研究臭氧污染敏感气象条件,统计各气象因子分布在不同数值区间时发生臭氧污染事件的相对频率(即分指数),按照分指数最大值和最小值的差值大小进行排序,筛选出10个与臭氧污染密切相关的气象因子,将10个气象因子的分指数进行累加,即得出臭氧综合指数。随后,对各地构建臭氧综合指数时采用的气象要素进行统计,得到出现频率最高的3个气象要素,并参考这些气象要素构建了臭氧潜势指数。分别以臭氧潜势指数和臭氧综合指数对北京市2019年臭氧日最大浓度建立拟合预报模型,结果表明:两类指数的拟合预报值与实测值有着相似的变化趋势;利用臭氧综合指数计算得到的预报值与实测值的相关系数为0.76,优于利用臭氧潜势指数计算得到的预报值与实测值的相关系数(0.64)。  相似文献   

8.
利用2013—2016年杭州市国控点臭氧观测资料,讨论了杭州市臭氧时空变化特征,并对一次臭氧高浓度过程进行分析。结果显示,近年来杭州市臭氧浓度以10. 3%的升幅渐增,增幅大于北京、上海、广州等城市。千岛湖背景点及位于城区的朝晖五区、下沙、西溪站点臭氧浓度月变化存在2个峰值,第一峰值出现在5月,受降水、温度影响次峰值出现在8—10月;夜间臭氧浓度背景点高于城区点。杭州市10个国控站点臭氧浓度相对标准偏差逐年减小,臭氧污染已呈区域性,城东为重污染区域。2015年8月出现的一次臭氧重污染过程主要是受副热带高压控制下和台风外围的影响,导致杭州市朝晖五区站点臭氧浓度高达228μg/m~3,台风登陆后得以缓解。  相似文献   

9.
利用臭氧激光雷达对南京市一次典型臭氧污染过程连续观测,分析该典型臭氧污染过程中近地面和高空臭氧的变化规律、污染的发生过程与成因。结果表明:在夏季高温、风速低、冷空气影响锋前的静稳天气下,近地面臭氧的循环生成和夜间高空残留的臭氧在湍流作用下混合并积累造成该污染过程;近地面和低层臭氧浓度具有明显的日变化趋势,单峰型特征,而高空臭氧浓度无明显日变化特征,夜间维持高值;边界层高度上下始终存在臭氧高值带,厚度达数百米;正午至午后时段,各垂直高度上臭氧浓度混合均匀,随高度基本无梯度变化,达到近地面至高空1.5 km的臭氧高污染层覆盖。  相似文献   

10.
2008-2016年臭氧监测试点城市的臭氧污染特征   总被引:2,自引:0,他引:2  
选取臭氧试点城市北京、沈阳、上海和重庆,通过对2008-2016年臭氧监测数据进行分析研究,可以看出4个试点城市中北京的臭氧污染最严重。4个城市的臭氧污染特征均为高浓度臭氧所占比例较大,高值比较高,低浓度臭氧所占比例较小。北京、沈阳和上海的年平均臭氧浓度总体呈上升趋势。北京、上海、重庆、沈阳4个城市9年的超标天数比例分别为15.9%、7.7%、3.9%、6.5%。上海的臭氧浓度在秋季非常高。2012年的臭氧变化趋势比较异常,可能是由于2012年发生的不寻常气候条件导致。4个城市的臭氧浓度变化和气象条件的变化显著相关。  相似文献   

11.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

12.
气象条件对沈阳市环境空气臭氧浓度影响研究   总被引:26,自引:20,他引:6  
利用2013年沈阳市环境空气监测点位臭氧监测数据,分析沈阳臭氧浓度变化特征,结合气象资料分析了其对臭氧浓度的影响。结果表明,沈阳市不同区域臭氧浓度变化特征基本一致。臭氧浓度日变化呈单峰趋势,最大值出现在14:00左右,最小值出现在6:00左右;臭氧浓度变化具有明显的季节特征,夏季臭氧浓度最高,春秋次之,冬季最低;臭氧浓度受温度、风速、湿度、能见度、天气情况影响,臭氧浓度变化是多因素共同作用的结果。  相似文献   

13.
京津冀区域臭氧污染趋势及时空分布特征   总被引:15,自引:11,他引:4  
为研究京津冀区域的臭氧(O_3)污染情况及其时空分布特征,对2013—2015年京津冀区域13个城市80个国家环境空气监测点位的监测数据进行了统计分析。结果表明:2013—2015年,京津冀区域O_3污染状况整体呈加重趋势,其中2014年污染状况最为严重。13个城市中O_3污染最严重的城市为北京和衡水,连续3年均超标,且处于上升态势中。区域内不同城市O_3污染趋势并不相同。京津冀区域O_3浓度变化呈明显的季节变化特征,春末和夏季的O_3污染最严重。O_3-8 h(臭氧日最大8 h均值)年均值的高值区主要分布在北京中北部、承德和衡水等,2013—2015年第90百分位O_3-8 h的高值区均集中分布在北京。O_3的浓度峰值时间要晚于NOx2~5 h。O_3在春、夏季呈单峰分布,白天15:00左右出现最大值,在秋、冬季浓度较低,全天波动不大。  相似文献   

14.
海口市臭氧污染特征   总被引:8,自引:7,他引:1  
基于2013—2015年海口市4个空气质量自动监测站点数据,结合气象资料,分析了海口市O_3的污染特征。结果表明:海口市O_3总体优良,优良天数比例为99.4%,污染天数均为轻度污染;在良和污染天数中,O_3作为首要污染物的天数占40%,超过其他5项污染物占比。海口市10月O_3浓度最高。O_3月均浓度与温度呈负相关关系,同时与风向有密切关系:5—8月气温较高,以南风为主,O_3浓度较低;1月北风频率较高,易受外来污染传输作用,O_3浓度相对较高。O_3超标日以东北风为主,日变化并未呈现单峰型特征,12:00—22:00时段O_3浓度在10%范围内小幅变化。台风外围型和北方冷高压底部型是造成海口市O_3超标的2类典型天气形势。  相似文献   

15.
以沈阳2013—2015年臭氧(O_3)监测数据为基础,从地域差异及时间变化上分析了沈阳O_3浓度变化特征。结果表明:沈阳城市外围O_3浓度高于城市中心;O_3浓度变化具有明显季节特征,夏季O_3浓度最高,冬季最低;O_3浓度日变化呈单峰分布,谷值出现在06:00,峰值出现在14:00;O_3浓度出现明显"周末效应",周末白天O_3浓度高于工作日O_3浓度,夜间差异不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号