首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
西宁市非采暖季和采暖季PM2.5中14种金属元素特征   总被引:1,自引:0,他引:1  
于2012年11月采暖季和2013年9月非采暖季,在青藏高原典型城市西宁市4个采样点采集细颗粒物(PM_(2.5))样品,共获得40个有效样品。用微波消解-ICP-MS法、原子荧光法分析了样品中14种重点防控金属。结果表明:14种重点防控金属中Ag、Tl平均质量浓度为0.10~0.50 ng/m~3,Co、Sb、Hg平均质量浓度为0.50~4.00 ng/m~3,V、Cd、Cr、Ni、Cu、As平均质量浓度为4.00~50.0 ng/m~3,Mn、Pb、Zn平均质量浓度为50.0~2 000 ng/m~3。采样期间,采暖季相比非采暖季,PM_(2.5)质量浓度有下降趋势,不同采样区金属元素浓度有增有减。富集因子分析结果表明,重点防控金属元素在非采暖季主要来源于土壤风沙扬尘、机动车尾气和工业排放,采暖季主要来源于土壤风沙扬尘、燃煤、燃油、机动车尾气和工业排放。非采暖季Zn、Ag、Cd、Hg、Tl和Pb富集因子较高,采暖季Zn、As、Ag、Cd、Sb、Hg、Tl、Pb富集因子较高,更容易受到人为源的影响。  相似文献   

2.
南昌市秋季大气PM2.5中金属元素污染及生态风险评价   总被引:1,自引:0,他引:1  
2013年秋季采集了南昌市6个不同功能区的大气PM_(2.5)样品,分析了PM_(2.5)含量及其中18种金属元素的含量。结果表明:采样期间南昌市大气PM_(2.5)平均质量浓度均在《环境空气质量标准》(GB 3095—2012)日平均浓度限值二级标准规定(75μg/m3)的范围内。PM_(2.5)中多数金属元素的含量水平低于中国内地城市,而与香港和国外城市相比则偏高。分别采用富集因子法和潜在生态风险指数法对重金属污染风险进行了评价。富集因子法表明Zn、Pb、Hg、Cu等元素富集程度较高,Cd富集程度极高,人为源显著;潜在生态风险指数法表明Pb、Hg、Cd潜在生态风险程度为极强,南昌市总体潜在生态风险表现为极强,2种方法的评价结果较为一致。  相似文献   

3.
抚顺市PM10中元素分布特征及来源分析   总被引:4,自引:2,他引:2  
为了确定抚顺市PM10中元素的浓度特征及其来源,于2006—2007年的采暖季、风沙季和非采暖季在抚顺市的6个采样点采集PM10样品,并用等离子体原子发射光谱法(ICP-AES)测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量。结果表明,Al、Mg、Ca、Na、K、Mn、Fe等地壳元素在17种元素中占有较大比重,全年平均达到97.0%。富集因子分析结果表明,Cu、Zn、Pb、Cr、Co、Cd等元素在各季和各采样点明显受到人为活动影响,是典型的污染元素。主因子分析结果显示,土壤风沙尘、建筑尘、燃煤尘、道路扬尘、机动车尾气排放、金属冶炼、锰、铜、钛工业源是抚顺市PM10中元素的主要来源。  相似文献   

4.
2013—2014年采集贵阳市大气PM_(2.5)样品357个,利用ICP-OES和ICP-MS检测样品中无机元素的含量。结果表明:23种元素的年均值高低依次为Na Ca Al K Mg Fe Cu Zn Mn Pb Ba Cr Ni Sr As=Zr WRb Ga Bi=Ge Co U,其中Cr、As的年均值分别为(30±20) ng/m3和(8±5) ng/m3,超过《环境空气质量标准》(GB3095—2012)的年均参考限值。运用正定矩阵因子分解法(PMF)来源解析表明:该市大气PM_(2.5)的主要来源为燃煤排放源、生物质燃烧源、交通源、建筑水泥尘源、土壤风沙尘源和残油燃烧源,其贡献率分别为46. 6%、21. 7%、14. 8%、9. 0%、6. 2%和1. 7%,且有显著的季节变化特征。  相似文献   

5.
利用环境空气多金属在线监测仪对23种金属元素连续观测1年,分析了重庆城区PM2.5中金属元素浓度变化规律和来源。23种金属年均浓度值为(2.22±0.42)μg/m3,PM2.5样品中金属元素占2%~4%,浓度较稳定且季度特征明显,同时PM2.5中金属主要为K、Fe、Ca、Zn、Mn、Pb。K、Ca、Mn等3种金属既来源于自然源也来源于人为源,Zn、Pb、Cu、As、Cd等5种金属主要来自人为源。利用因子分析得出重庆城区PM2.5中金属元素主要来自土壤风沙扬尘、机动车尾气排放、冶金工业燃烧排放、燃煤燃烧排放。  相似文献   

6.
为研究邯郸市大气细颗粒物(PM_(2.5))中金属元素的污染特征,选取城区4个功能区(工业区、工业生活区、教学区和交通区)分别布设采样点位,采集2017年冬季PM_(2.5)样品。采用电感耦合等离子体质谱仪分析样品中11种金属元素(V、Cr、Mn、Fe、Ni、Co、Cu、As、Cd、Ba和Bi)的含量,对其空间污染特征进行比较,并运用主成分分析、聚类分析和绝对主成分得分-多元线性回归模型对金属元素的来源及其贡献率进行模拟计算,对Cr、Ni、Cu、As和Cd的潜在生态风险进行评估。研究结果表明,邯郸市冬季PM_(2.5)污染较为严重,4个功能区的PM_(2.5)日均值远超《环境空气质量标准》(GB 3095—2012)二级标准限值。对金属元素含量的分析表明,教学区大气PM_(2.5)中金属元素质量浓度的总和相对较低,尤其是Fe、Cr、Cd、Mn和Cu的含量均低于其他3个功能区,但是As的含量较高。富集因子计算结果显示,V、Co和Ba在邯郸市的富集系数小、污染程度低,其余金属元素尤其是As、Fe、Cd和Bi的富集系数大、污染程度高。对研究区大气PM_(2.5)金属元素的来源进行解析发现,金属元素的主要来源包括工业生产、自然源、化石燃料的燃烧及交通运输活动。其中,Cr、Mn、Fe、Cu、Cd和Ba主要来自工业活动,V、Co和Bi的主要来源是自然源,Ni和As主要来自化石燃料的燃烧及交通运输活动。潜在生态风险评估发现,邯郸市4个功能区金属元素的总生态风险指数均较高,尤其是As和Cd在各个功能区的潜在生态风险程度为极强,但Cr和Ni的潜在生态风险程度较低。  相似文献   

7.
采用聚四氟乙烯膜采样,硝酸-过氧化氢-氢氟酸微波消解样品,ICP-MS法测定南京某国控点环境空气PM_(2.5)中30种元素,结果目标元素在0μg/L~500μg/L之间线性良好,方法检出限为0.02 ng/m~3~15 ng/m~3,实际样品6次测定结果的RSD为0.5%~19.6%,加标回收率为78.5%~126%;所测元素的年日均值为0.03 ng/m~3~1 462 ng/m~3,占PM_(2.5)总量的7.3%。主要来自化石燃烧、机动车排放和钢铁冶炼的Cd、Zn、Se、Pb、Sb、Cu、As富集程度较高,Al、Ba、Be、Fe主要来自土壤岩石等自然源,富集度低。元素测定值季节分布呈秋冬高、春夏低的态势,与PM_(2.5)的季节变化趋势一致。  相似文献   

8.
京津冀典型城市采暖季颗粒物浓度与元素分布特征   总被引:5,自引:4,他引:1  
选择京津冀地区3个典型城市和从南至北的4个国家大气背景站作为研究对象,收集采暖季空气颗粒物PM2.5、PM10样品,微波消解-ICP-MS法分析了样品中的68种元素。结果表明,北京、天津、石家庄PM2.5和PM10日均质量浓度均高于国家二级标准限值和背景点,一元线性回归分析结果表明,PM10与PM2.5质量浓度呈线性相关,Na、Mg、Al、S、K、Ca、Fe质量浓度为0.1~10μg/m3,Si、P、Ti、Mn、Ni、Cu、Zn、Ba、Pb质量浓度为10~100 ng/m3,其他元素质量浓度为0.01~10 ng/m3或未检出。在元素构成上,S、Na、Al、K、Fe、Mg、Ca、P、Si等是主要元素,元素含量均大于1%。其他微量元素每种元素含量为0.1%~1%。14种重点防控重金属在PM2.5中的吸附显著高于PM10,主要来源于燃煤、燃油、工业排放、机动车尾气等。  相似文献   

9.
在2017年2月、5月、8月、11月期间各选取20 d连续采样,采用在线监测和滤膜采集-实验室检测2种方法分析南京市大气PM_(2.5)中多种金属元素,并将两方法的测定结果作比对分析。结果表明,K、Fe、Zn、Cu、Pb、Se、V、Ni元素日均值总体相近,其余元素略有差异;Pb、As、V元素相关系数R~2均在0.70及以上,Cu、K、Mn元素相关性略差,均具可比性。Fe、Zn、Ca、Al、Ba、Cr、Ni元素测定更偏向采用滤膜采集-实验室检测法,K、Mn、Pb、Cu、As、V、Se元素测定2种监测方法均可,若要快速且长期监测数据,则在线监测法更好。  相似文献   

10.
于非采暖季和采暖季分别采集某石化化工行业聚集城市中心城区室内外PM_(2.5)样品,采用高效液相色谱法分析PM_(2.5)上载带的16种PAHs,对其分布特征、来源以及室外PAHs污染对室内污染的贡献进行了初步探讨。结果表明,研究区域非采暖季和采暖季室外PM_(2.5)中ΣPAHs浓度日均值分别为36.3、294 ng/m~3,室内PM_(2.5)中ΣPAHs浓度分别为14.8、84.6 ng/m~3,均以4、5环PAHs为主;室内PAHs主要来自室外渗透污染,但同时明显存在室内排放源贡献;PAHs来源分析进一步证实研究区域PAHs主要来自煤炭、石油等不完全燃烧,采暖季煤炭燃烧源贡献更突出。  相似文献   

11.
为了解冬季采暖对济南市大气PM2.5中汞浓度的影响,在济南市城郊开展了为期超过两年的PM2.5样品采集工作,共计采集有效样品481个,测定并分析其中的颗粒汞(PHg)浓度和汞含量变化特征。结果表明,济南市大气PHg在采暖期的浓度均值为583.1 pg/m3,约为非采暖期的1.4倍,在国内外城市中处于中等偏上水平。济南市大气PM2.5对PHg具有极强的富集能力,且在采暖期更强,可能与燃煤等活动排放了更多的超细颗粒物有关。在采暖期,大气PHg浓度主要受煤炭燃烧源和交通排放源影响,两者分别贡献了总方差的39.2%和16.7%;在非采暖期,气象条件季节性变化、交通排放源、煤炭燃烧源的影响显著,三者分别贡献了总方差的32.4%、15.8%、12.0%。高浓度PHg主要来源于分布在采样站点东北偏东方向上的众多燃煤工业企业。此外,济南市大气PHg还主要受来源于鲁西南地区的区域污染气团的影响,途经污染较重的京津冀地区的污染气团对济南市PHg浓度也有较大贡献。在非采暖期,济南市PHg还受到来自东南和西南方向的清洁海洋气团的显著影响。  相似文献   

12.
The paper discusses ambient concentrations of PM2.5 (ambient fine particles) and of 29 PM2.5-related elements in Zabrze and Katowice, Poland, in 2007. The elemental composition of PM2.5 was determined using energy dispersive X-ray fluorescence (EDXRF). The mobility (cumulative percentage of the water-soluble and exchangeable fractions of an element in its total concentration) of 18 PM2.5-related elements in Zabrze and Katowice was computed by using sequential extraction and EDXRF combined into a simple method. The samples were extracted twice: in deionized water and in ammonium acetate. In general, the mobility and the concentrations of the majority of the elements were the same in both cities. S, Cl, K, Ca, Zn, Br, Ba, and Pb in both cities, Ti and Se in Katowice, and Sr in Zabrze had the mobility greater than 70%. Mobility of typical crustal elements, Al, Si, and Ti, because of high proportion of their exchangeable fractions in PM, was from 40 to 66%. Mobility of Fe and Cu was lower than 30%. Probable sources of PM2.5 were determined by applying principal component analysis and multiple regression analysis and computing enrichment factors. Great part of PM2.5 (78% in Katowice and 36% in Zabrze) originated from combustion of fuels in domestic furnaces (fossil fuels, biomass and wastes, etc.) and liquid fuels in car engines. Other identified sources were: power plants, soil, and roads in Zabrze and in Katowice an industrial source, probably a non-ferrous smelter or/and a steelwork, and power plants.  相似文献   

13.
石家庄市大气颗粒物元素组分特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物的污染特征及其来源,于2013年4—5月在主城6区分别采集TSP、PM10和PM2.5颗粒物样品,利用ICP-MS分析其中的22种元素浓度。结果表明,石家庄市城区Ca、Fe元素在各粒径颗粒物中含量都较高,PM2.5中的S、K含量较高,PM10和TSP中Mg、Al的浓度相对较高。颗粒物的主要来源为燃煤尘、道路尘和建筑尘,TSP、PM10和PM2.5具有较好的统计相关性和同源性。  相似文献   

14.
重庆城区不同粒径颗粒物元素组分研究及来源识别   总被引:2,自引:2,他引:0  
为研究重庆市大气颗粒物的污染特征及其来源,于2010年3—10月在主城区分别采集PM1.0、PM2.5和PM103种粒径的颗粒物样品,利用XRF分析其中的26种元素浓度。结果表明,重庆市主城区S元素在各粒径中含量都较高,细粒子中K的含量较高,粗粒子中Si、Ca和Fe的浓度较大。富集因子分析表明,主城区Cd、S、Se等污染元素的富集系数较大,且粒径越小,富集现象越明显。利用因子分析得出土壤风沙、扬尘、燃煤的燃烧、机动车燃油产生的尾气排放、生物质燃烧排放是重庆市颗粒物污染的主要来源。  相似文献   

15.
西宁市城区冬季PM2.5和PM10中有机碳、元素碳污染特征   总被引:1,自引:0,他引:1  
2014年11月—2015年1月对西宁市冬季开展PM_(2.5)和PM_(10)的连续监测。利用DRI 2001A型热光碳分析仪(美国)对有机碳和元素碳进行分析,结果表明:西宁市冬季PM_(2.5)和PM_(10)中碳气溶胶所占比例分别为33.13%±6.83%、24.21%±6.27%,说明碳气溶胶主要集中在PM_(2.5)中;OC/EC值均大于2,说明西宁市大气中存在二次污染;SOC占PM_(2.5)和PM_(10)的质量浓度比例分别为46.50%和57.40%,PM_(2.5)中SOC浓度占PM_(10)中SOC浓度的61.88%,说明SOC主要存在于PM_(2.5)中,且SOC形成的二次污染和直接排放的一次污染都是西宁市碳气溶胶的主要来源;与其他城市比较发现,西宁市冬季PM_(2.5)中的碳气溶胶含量普遍高于其他城市,PM_(10)中OC质量浓度相对其他城市较高,EC质量浓度偏低;OC和EC的相关性不显著,说明来源不统一;进一步对OC和EC各组分质量浓度进行分析知,西宁市冬季碳气溶胶主要来源于机动车汽油排放、燃煤和生物质燃烧。  相似文献   

16.
2019年10月12日—11月25日,使用单颗粒气溶胶飞行时间质谱仪(SPAMS)在位于长沙市的湖南省生态环境厅点位进行了为期45 d的定点监测。结果表明,监测期间长沙市总体空气质量小时级别优、良天气占比为80.3%。长沙市首要污染物为PM_(2.5),其主要来源为机动车尾气源,二次无机源次之,工业工艺源排在第三位,占比分别为27.4%,21.5%和17.4%。整体来看,监测期间PM_(2.5)质量浓度的升高大多伴随着以上3种污染源颗粒物的同步升高。机动车尾气源具有明显的早高峰,工业工艺源、生物质燃烧源和餐饮源夜间占比增加。在偏东方向气团主导下,工业工艺源和燃煤源贡献最大;在东北方向气团主导下,PM_(2.5)质量浓度最高,且机动车尾气源占比最高。  相似文献   

17.
系统研究建立高原典型城市拉萨市开放源(土壤风沙尘、道路扬尘、施工扬尘、采矿扬尘),移动源(机动车尾气尘),固定源(工业烟粉尘、生物质燃烧尘及餐饮油烟)共3类8种大气颗粒物(PM_(2.5)、PM_(10))污染源化学成分谱。研究结果表明:开放源以地壳类元素为主,自然背景特征明显;移动源源成分谱中元素碳含量明显高于其他城市,在PM_(2.5)、PM_(10)源谱中分别占60.15%、51.86%,有机碳含量也相对较高,均超过20%;固定源中,牛粪和松柏枝两类生物质燃烧污染源的有机碳含量显著高于其他组分,工业烟粉尘中Ca远高于其他组分,在PM_(2.5)、PM_(10)源谱中分别占21.32%、21.21%。移动源、固定源源成分谱均显示出高原城市的独特特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号