首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
综述了全氟和多氟烷基化合物(PFASs)在国内外地表水环境中的空间分布及污染特征,总结归纳了PFASs的来源和特征变化趋势。针对地表水中PFASs的监测种类、监测技术及风险评估等方面存在的问题,提出未来需加强日常监测,重点加强对水环境中新型PFASs的关注;针对流域中不同种类PFASs建立高特异性、高灵敏度监测新技术;筛选适合的水生生物作为环境污染指示物以应用于新污染物的评估等建议。为今后我国地表水环境 PFASs污染的现状调查及治理工作提供确实可行的科学参考。  相似文献   

2.
大伙房水库属于全国城市供水九大重点水源地之一,作为辽宁省重要的饮用水水源地,库区水质直接影响该区域人民饮水安全及身体健康。对大伙房水库表层水体、沉积物和鱼类样品中全氟化合物(PFAS)的赋存特征及可能的来源进行分析,并运用健康风险商值法评估PFAS的潜在健康风险。结果表明,库区表层水体中ρ(ΣPFAS)为1.18~8.19 ng/L,主要污染物为全氟辛酸及其盐类化合物(PFOA)和全氟戊基羧酸(PFPA),其浓度水平随时间呈下降趋势;沉积物中只检出3种污染物,分别为PFOA、全氟十一烷基羧酸(PFUnA)和全氟十二烷基羧酸(PFDoDA),ω(ΣPFAS)为0.16~0.48 ng/g;不同鱼类样品中ω(ΣPFAS)由高到低依次为:武昌鱼(2.49 ng/g)>鲤鱼(2.30 ng/g)>白鲢(2.02 ng/g)>花鲢(2.01 ng/g),主要污染物均为PFPA。基于主成分分析与相关性分析可知,大伙房水库库区的PFAS主要来自采矿、电镀、涂料等工业污染废水和生活污水;健康风险评估结果表明,表层水体和鱼类样品中的PFAS不存在健康风险。  相似文献   

3.
简述了PFASs在长江流域上、中、下游水环境中的空间分布格局和时间变化趋势,探讨了其生物蓄积效应、淡水生物毒性效应和生态风险评价。指出,PFASs广泛赋存于长江流域从上游至下游的干流和支流及湖泊之中,其平均值低于我国其他主要流域;PFOA在长江流域内环境浓度最高,而PFOS在近10年环境管控措施下浓度降至极低,PFBS、PFBA和PFHxA等短链物质正作为替代物使用,可能在未来出现升高趋势。长江流域内水生动物(包括食用鱼类)能够从环境中富集PFASs并通过食物链传输,在其血液、肌肉和内脏中蓄积。虽然目前长江流域生态风险评价表明PFASs总体上风险为低级,但局部高浓度地区仍可能对敏感生物造成基因表达受损等毒性效应。  相似文献   

4.
采用分段采样的方式收集杭州市2018年8月2日—3日一场降水样品,测定其中16种全氟化合物(PFCs)及主要化学组分浓度。结果发现,此次降雨过程水样的pH值范围为5.04~5.32,均为弱酸性降水,酸雨类型为复合型,检出的主要阳离子为NH+4,主要阴离子为SO2-4和NO-3;样品中检出7种中短链PFCs,包括2种全氟烷基磺酸(PFSAs)和5种全氟烷基羧酸(PFCAs),ΣPFCs质量浓度范围为4.41 ng/L~25.2 ng/L,主要污染因子全氟辛酸(PFOA)质量浓度范围为096 ng/L~13.1 ng/L;降雨过程对大气污染清除作用的统计结果表明,区域大气环境中的主要化学组分及除全氟丁酸(PFBA)之外的PFCs污染主要吸附在云下大气颗粒物上;雨水中各污染因子浓度变化特征及相关性统计结果提示,杭州市大气中PFCAs和PFSAs两类PFCs可能来自不同的污染源。  相似文献   

5.
使用固相萃取-超高效液相色谱串联质谱法,测定广西3个污水处理厂(P1、P2、P3)中17种全氟和多氟烷基物质(PFASs)。结果显示,共检测出10种PFASs,检出率为33.3%~100%。进、出水中PFASs质量浓度分别为32.0~86.4和23.0~39.6 ng/L。全氟丁烷磺酸(PFBA)、全氟戊酸(PFPeA)和全氟辛酸(PFOA)是进、出水中的主要污染物。厌氧-缺氧-好氧(AAO)工艺对PFASs的去除率为49.0%;改良型序批反应器(MSBR)工艺对PFASs的去除率为72.2%,氧化沟工艺对PFASs的去除率为25.0%。P1和P3进水中的PFASs主要来源于生活污水,P2进水中的PFASs来源包括生活污水和工业废水。P1出水中的全氟十二烷酸(PFDoDA)对纳污河流的鱼类和水蚤构成高生态风险,对藻类构成中等生态风险,P2和P3出水对纳污河流构成的生态风险较低。  相似文献   

6.
通过建立直接进样-高效液相色谱串联质谱(HPLC-MS/MS)测定污水处理厂进出水中的10种全氟化合物的方法,了解污水厂进出水中全氟化合物污染情况。10种目标分析物在10~500 ng/L范围内具有良好的线性关系,方法检出限为2.3~8.3 ng/L,精密度为2.1%~7.1%,加标回收率为60.6%~91.7%。应用该方法测定某市典型污水厂进出水中的全氟化合物,进水中全氟化合物质量浓度为90.9~206 ng/L,主要污染物是PFOA、PFHxS和PFBS;出水中全氟化合物的质量浓度为67.4~158 ng/L,环境排放量为6.7~22.9 g/d,主要污染物是PFOA和PFHxS。结果表明,该方法能很好地适用于复杂基质中10种全氟化合物的检测。  相似文献   

7.
利用固相萃取技术,基于高效液相色谱一质谱仪,建立检测水样中典型全氟化合物(全氟辛基磺酸、全氟辛酸、全氟壬酸)的分析方法。从线性范围、定量检测限、回收率、空白试验以及实际样品测定方面,验证了分析方法的可行性。该分析方法降低了仪器成本,操作简便,有利于全氟化合物监测项目的推广。  相似文献   

8.
建立了水、沉积物及土壤中13种全氟化合物(PFCs)的富集、净化、浓缩的前处理方法及快速液相色谱三重四级杆串联质谱的分析方法。9种全氟羧酸、2种典型全氟磺酸、2种磺酰铵衍生前体物的响应因子与质量浓度的线性关系良好。添加回收实验表明,13种全氟化合物在水、土壤和沉积物中的回收率为52.3%~119.3%,变异系数为2.3%~19.4%,方法检出限分别为0.015~0.472 ng/L、0.012~0.875 ng/g、0.004~0.743 ng/g。该法成功应用于实际样品的测定,沉积物和土壤中分别检测到3种和10种全氟化合物。  相似文献   

9.
固相萃取-UPLC-MS/MS法测定水中全氟化合物   总被引:1,自引:0,他引:1  
水样中全氟辛酸、全氟辛烷磺酸钾、全氟丁酸、全氟丁烷磺酸经弱阴离子交换固相萃取柱富集净化后,用超高效液相色谱-串联质谱法测定。通过优化样品前处理条件和仪器条件,使4种全氟化合物在0.05μg/L~10.0μg/L范围内线性良好,相关系数为0.998 9~0.999 9,方法检出限为0.27 ng/L~0.96 ng/L。空白水样3个质量浓度水平的加标回收率为73.1%~91.3%,6次测定结果的RSD为7.4%~14.3%。  相似文献   

10.
采用固相萃取处理水样,超高效液相色谱-四极杆-飞行时间质谱法(UPLC-QTOF-MS)测定水样中14种全氟有机酸。通过优化试验条件,使方法在100 μg/L~100 μg/L范围内线性良好,方法检出限为087 μg/L~480 μg/L。空白水样的加标回收率为808%~113%,测定结果的RSD≤37%。将该方法用于测定厦门市某大学周边水样,结果14种全氟有机酸均为未检出。  相似文献   

11.
An assay capable of simultaneously measuring both general toxicity and more subtle genotoxicity, in aqueous environmental samples, is described. The assay uses eukaryotic (yeast) cells, genetically modified to express a green fluorescent protein (GFP) whenever DNA damage, as a result of exposure to genotoxic agents, is repaired. A measure of the reduction in cell proliferation is used to characterise general toxicity producing familiar EC(50) and LOEC data. The assay protocol has been developed for proposed use in the field and hence employs dedicated, portable instrumentation, the development of which is described. A range of environmentally relevant substances has been evaluated using the assay, including solutions of metal ions, solvents and pesticides. Preliminary data comparing the yeast assay's response to that of a standard Daphnia test in the analysis of the toxicity of 34 varied industrial waste effluents are also presented. The sensitivity to a wide range of substances and effluents suggests the assay should be useful for environmental toxicity monitoring.  相似文献   

12.
The mid-Atlantic region of the United States has a wide diversity of natural resources. Human pressures on these natural resources are intense. These factors have resulted in the collection of substantial amounts of environmental information about the region by EPA (both Regional and Research Offices), other governmental agencies, industry, and environmental groups. EPA Regional Offices comprehend first hand the importance of environmental data and are extremely supportive of investments in these data. Environmental data are used prominently in a variety of strategic planning and resource management initiatives. In EPA Region 3, the use of scientifically-sound environmental data is, in fact, one of our strategic programmatic goals. Environmental information is captured and assessed continuously by Regional staff, sometimes working in partnership with other Federal and State agencies, to derive relevant resource management conclusions. The restoration goals for the Chesapeake Bay are based on environmental indicators and resulting data. Attainment of the water quality objectives for streams and coastal estuaries are predicted on monitoring data. Our initiative in the Mid-Atlantic Highlands area uses environmental indicators to measure the condition of forests and streams. Landscape-level indicators will provide unique opportunities for the use of data in planning and management activities in support of the principles of community-based activism and sustainable development. Significant value is added to these data during their use by Regional managers. Regional programs, such as the Chesapeake Bay Program and several National Estuary Programs, are founded in environmental data. Environmental information is used by the Regional program managers to ascertain whether programs are accomplishing their intended objectives. Finally, Regional programs provide a crucial means for disseminating this information to broad segments of the public, so that a better informed and educated client base for effective environmental protection will develop.  相似文献   

13.
The traditional approach of coupling estimates of human exposures to individual chemicals with laboratory studies of the toxicity of the chemicals as the basis for quantitative assessments of risk is not adequate when considering problems near hazardous waste sites. For example, there are (a) too many chemicals and mixtures involved, (b) containment uncertainties, and (c) future exposure problems associated with groundwater and soil contamination. Among the items to be considered in expanding the dimensions of risk assessment methodologies of the past are (a) identification of chemical groups or of dominant toxic chemicals of principal concern and the likely man-made as well as natural pathways for environmental migration, (b) the role of biological monitoring in addition to traditional monitoring approaches, and (c) the coupling of monitoring data with past, current, and future population activity patterns and with epidemiological and other health data.Monitoring data is a key in risk assessments since there is little likelihood that materials balances or modelling will provide authoritative information concerning exposure levels. The use of monitoring data from control areas and from nationwide baseline surveys in developing comparative risk assessments is particularly important. Finally, recent experience provides us with a number of practical guidelines for designing and carrying out monitoring programs that will provide authoritative and useful data. *** DIRECT SUPPORT *** AZ802019 00002  相似文献   

14.
环境监测是水生态健康监测与评估的重要环节,基于物理、化学监测的传统水质监测通常仅能提供独立的数据信息,不能全面、直观地反映水环境状况。基于生物等生命体导向的水生态监测通过生物对环境的响应,能够直接反应复杂水体状况,在水环境健康监测与评估中占据重要地位。基于病原微生物、指示生物介绍了生物监测中的常规生物指标,总结了包括藻类、无脊椎动物和鱼类在内的常见指示生物在不同类型污染水体中的环境指示作用。从生物毒性效应出发介绍了常用的毒性效应测试方法、分析了污染物在不同生物学水平的响应,从而指明生物毒性效应在水环境健康评估中的发展优势。再从生态完整性角度阐述了生态完整性评价的一般方法和新兴分子生物学技术在水生态健康评估中的应用。重点指出环境毒理学和分子生物学在水环境监测的优势,以期为更加科学精确地进行水生态健康监测预警提供支撑。  相似文献   

15.
The main aim of the toxicity test is to be able to measure toxicity in organisms, and therefore to assess whether a nationally or internationally preset standard is met. LC50 values (median lethal concentration that kills 50% of the population at a given time) or LT50 values (median lethal time in which 50% of the test species died) provide useful information for risk assessment. However, extrapolating laboratory data to actual field conditions is difficult because of changing environmental factors like temperature and salinity. LC50 copper data for Hediste diversicolor treated multifactorially show the plasticity of the worm to environmental variables. Increasing temperature, 12 to 22°C, and increasing salinity, 7.6 to 30.5 reduced toxicity of copper to the worms without sediment. In the presence of sediment increasing temperature and increasing salinity increased toxicity of copper to the worms.  相似文献   

16.
Remote sensing from aircraft and earth-observing satellites is an essential source of environmental information and, at regional and global scales, remote sensing from satellites is often the only way in which some information can be collected. Naturally there are technical limitations, such as low resolution and the inability of optical sensors to see through clouds that restrict the use of satellite data, but technology is moving rapidly and major advances can be expected during the current decade, especially from radar satellites.The main barriers to the use of environmental information provided by remote sensing are not technological, but include cost and a need for training and transfer of technology, and a requirement for users to depart from traditional methods where new technology offers distinct advantages. Perhaps the most important contributions that users of remote sensing data can make to breaking down the barriers to the use of environmental data is to provide very clear statements of their information requirements so that technology can develop to meet these requirements.  相似文献   

17.
斑马鱼在环境检测领域中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
斑马鱼易饲养、易管理,体外受精和体外发育,可常年产卵、孵化,因此早期被作为模型动物广泛用于生物学研究中.近年来,随着环境问题日益突出,迫切需要有效、全面的环境监测手段和方法.斑马鱼或其转基因品种就是非常好的环境监测首选生物.因其对许多环境污染物十分敏感,可实时检测进入水环境的污染物.对斑马鱼在水体中重金属毒性、环境激素...  相似文献   

18.
Synthetic-based drilling muds (SBMs) offer excellent technical characteristics while providing improved environmental performance over other drilling muds. The low acute toxicity and high biodegradability of SBMs suggest their discharge at sea would cause minimal impacts on marine ecosystems, however, chronic toxicity testing has demonstrated adverse effects of SBMs on fish health. Sparse environmental monitoring data indicate effects of SBMs on bottom invertebrates. However, no environmental toxicity assessment has been performed on fish attracted to the cutting piles. SBM formulations are mostly composed of synthetic base oils, weighting agents, and drilling additives such as emulsifiers, fluid loss agents, wetting agents, and brine. The present study aimed to evaluate the impact of exposure to individual ingredients of SBMs on fish health. To do so, a suite of biomarkers [ethoxyresorufin-O-deethylase (EROD) activity, biliary metabolites, sorbitol dehydrogenase (SDH) activity, DNA damage, and heat shock protein] have been measured in pink snapper (Pagrus auratus) exposed for 21 days to individual ingredients of SBMs. The primary emulsifier (Emul S50) followed by the fluid loss agent (LSL 50) caused the strongest biochemical responses in fish. The synthetic base oil (Rheosyn) caused the least response in juvenile fish. The results suggest that the impact of Syndrill 80:20 on fish health might be reduced by replacement of the primary emulsifier Emul S50 with an alternative ingredient of less toxicity to aquatic biota. The research provides a basis for improving the environmental performance of SBMs by reducing the environmental risk of their discharge and providing environmental managers with information regarding the potential toxicity of individual ingredients.  相似文献   

19.
This risk assessment on 1,2-dichlorobenzene was carried out for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). Data from analytical monitoring programmes in large rivers and estuaries in the North Sea area were collected and evaluated on effects and environmental concentrations. Risk is indicated by the ratio of predicted environmental concentration (PEC) to predicted no-effect concentration (PNEC) for the marine aquatic environment. In total, 26 data for fish, 24 data for invertebrates and 17 data for algae were evaluated. Acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a final PNEC value of 37 microg/l. All available monitoring data indicate that 1,2-dichlorobenzene levels in estuaries are below 0.1 microg/l. Worst case concentrations in rivers are below 0.45 microg/l. With this value, calculated PEC/PNEC ratios give safety margins of 100 to 300, taking no account of dilution in the sea. 1,2-dichlorobenzene is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Convention for the Prevention of Marine Pollution (OSPAR-DYNAMEC) criteria. Environmental fate and effects data indicate that current use of 1,2-dichlorobenzene poses no risk to the aquatic environment.  相似文献   

20.
This risk assessment on 1,4-dichlorobenzene was carried out for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1996). Data from analytical monitoring programs in large rivers and estuaries in the North Sea area were collected and evaluated on effects and environmental concentrations. Risk is indicated by the ratio of predicted environmental concentration (PEC) to predicted no-effect concentration (PNEC) for the marine aquatic environment. In total, 17 data for fish, 9 data for invertebrates and 7 data for algae were evaluated. Acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a final PNEC value of 20 microg/l. Recent monitoring data indicate that 1,4-dichlorobenzene levels in coastal waters and estuaries are below the determination limit of 0.1 microg/l used in monitoring programs. The worst case value recorded in river water is below 0.45 microg/l. Using these values, calculated PEC/PNEC ratios give safety margins of about 40-200, taking no account of dilution in the sea. Environmental fate and bioaccumulation data indicate that current use of 1,4-dichlorobenzene poses no risk to the aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号