首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
滇池东南岸农业和富磷区入湖河流地表径流及污染特征   总被引:6,自引:1,他引:5  
应用聚类分析与因子分析方法,通过8次常规监测,对滇池东南岸10条以农业面源和受磷矿开采区影响的入湖河流的地表径流及其水质污染特征进行了分析,并探讨了其空间差异性。在南岸选取降雨过程相同的3条河流,开展暴雨径流监测,探讨污染物在降雨过程中的流失特征。结果表明,新宝象河的平均流量为2.6 m3/s,占总入湖流量的26.5%;总氮、总磷、化学需氧量、悬浮物是滇池的主要污染指标,许多河流均已严重超标。河流水质在空间上可分为3类,具有明显的空间差异性。总氮、总磷、溶解磷、硝态氮对水质污染的贡献率达到了53.636%,氮、磷含量是河流水质污染的主要贡献因子。降雨条件下化学需氧量、悬浮物浓度增长迅速,流量、悬浮物与大多数水质指标均有相关性,磷矿开采对河流水质的影响在降雨条件下更加明显,其悬浮物浓度在降雨条件下比只受农业面源影响的河流最高高出1.9倍。  相似文献   

2.
悬浮物对三峡水库水质测定结果的影响   总被引:1,自引:1,他引:1  
以长江寸滩断面和嘉陵江大溪沟断面水样为测定样品,探讨了悬浮物对三峡水库水质测定结果的影响,提出在三峡水库水质监测中,应对经0.45μm滤膜过滤的滤液进行指标测定,同时测定悬浮物含量,并对悬浮物进行组分分析;建议在地表水环境质量标准中,纳入悬浮物项目。  相似文献   

3.
为了解淮安市区饮用水源水质状况,江苏省水环境监测中心淮宿分中心于1998年—2002年对淮安市区饮用水源地水质进行了监测,结果表明,二河闸水质达Ⅱ类水标准,五毒项目未检出;杨庄闸上游废黄河水质除1999年达Ⅲ类水标准外,其他年份水质均达Ⅱ类水标准,五毒项目未检出;京杭大运河淮安市区段及里运河水质较差,主要是氨氮超标严重,近5年水质基本都是劣于V类水标准。指出,淮河污染问题还没有根本解决,沿淮上游积蓄的污水,时常以小流量下泄,并不时有所增大,经常发生水污染事故;淮阴第二抽水站抽水流量超过40m^3/s时,京杭大运河及里运河污水对淮安市区北京路地面水厂、淮阴区地面水厂两取水口水质产生一定的影响。  相似文献   

4.
采用标准指数法、综合评价法和灰色关联分析法对西藏地区4个典型垃圾填埋场周边地表水环境质量进行分析和评价。结果表明:各填埋场各评价因子均满足《地表水环境质量标准》(GB 3838—2002)Ⅲ类标准;各填埋场临近地表水环境综合水质均呈现上游监测点优于下游监测点;综合水质现状为尚清洁—清洁;灰色关联分析法评价结果为工布江达县生活垃圾填埋场下游监测点水质为Ⅱ类,其他填埋场各监测点水质均为Ⅰ类。各填埋场临近地表水水质现状满足其水域功能区要求,受填埋场污染环境影响较小。  相似文献   

5.
化工园区污水特征分析及生物毒性研究   总被引:3,自引:0,他引:3  
对天津市某化工园区9个主要污染企业及总排放口的废水进行监测分析,测定了12项水质常规指标和8项重金属指标,采用主成分分析法和生物毒性测试对化工区废水的水质进行了综合评价。结果表明,水质指标中大部分常规项目(如COD、氨氮和重金属含量)在多数企业污水中都符合排放标准,总氮、总磷污染较重,其中磷的污染最严重,最高超标23.83倍;影响污水性质的第一主成分为氯化物、电导率、全盐量和Cr,第二主成分为溶解氧、悬浮物、氨氮、总氮、总磷和As;废水具有一定的生物毒性,且不同化工企业之间毒性差异较大。水质化学测定的结果和生物毒性程度有一定相关性,但也存在差异,应该结合两者综合评价水质污染特征。  相似文献   

6.
磷是生物体不可缺少的元素之一,而水体中磷的研究又具有特殊的意义。武义江位于金华江上游,水质常年为V类或劣V类。流域内五金工业非常发达,聚集了大量的表面处理行业。本文通过十个主要监测指标对武义江进行水质监测,结果表明:武义江总磷浓度超出国家地表水环境质量标准(GB3838--2002)中三级标准的1.24倍,已经达到富营养化水平,是武义江水体污染的首要污染物;水体中叶绿素n的含量也达到富营养化水平;表面处理行业中有磷化工序的企业排放的大量含磷废水,是武义江水体污染的首要污染源。目前,当务之急是应加强对磷化相关企业的污染整治,才能从根本上改善武义江水质,促进流域内社会经济的可持续发展,实现水资源的可持续利用.  相似文献   

7.
基于“十三五”期间成都市生态环境监测数据,分析了成都市生态环境质量状况及变化趋势,以及存在的主要问题,以期为“十四五”成都市生态环境保护与治理提供参考。结果表明:“十三五”期间,成都市生态环境质量持续改善,空气质量优良天数比例整体呈上升趋势,部分污染物年平均浓度均呈逐年下降趋势;酸雨pH变化幅度较小,但酸雨量减少,酸雨污染减轻;地表水水质明显好转,Ⅰ~Ⅲ类水质比例呈现波动上升趋势,劣Ⅴ类水质比例呈下降趋势,成都市级、县级饮用水水源地水质保持稳定;昼间区域声环境质量、昼间交通道路声环境质量均比较稳定;生态质量为良,农村环境质量、辐射环境质量状况总体良好。但也存在空气中细颗粒物和臭氧污染仍较重,部分地表水断面水质不能稳定达标,乡镇饮用水水源地水质未全部达标,交通噪声与生活噪声影响城市声环境质量等问题,给“十四五”期间成都市生态环境质量改善带来挑战。  相似文献   

8.
在花溪区思雅河大学城段布设10个采样点,监测pH值、温度(T)、悬浮物(SS)、化学需氧量(COD)、氨氮(NH_3-N)、总磷(TP)和细菌总数(TPC)等指标,并采用单因子指数法、综合指数法和模糊综合法3种方法对水质进行评价。结果表明:河流主要污染指标为COD,且增势最明显,TPC和NH_3-N测定值的RSD均超过1,比其他指标变异程度更大;COD和TPC春冬季测定值高于夏秋季,NH_3-N测定值秋季最低,TP季节变化不明显,而冬季测定值较其他季节更稳定;思雅河大学城段水质较差,上游水质等级为Ⅳ类,中下游为劣Ⅴ类,主要污染源自农业和高校生活用水;3种方法中,模糊综合法更适用于小流域河流水质的定性定量评价,评价结果更加科学合理。  相似文献   

9.
为了探讨2009年入秋至2010年春,西南百年一遇大旱后城市降雨径流中重金属污染特性,对昆明市交通干道路面及路旁一处混凝土屋面的3次降雨径流进行了监测,研究了城区降雨径流中Cu、Zn、Cd、Pb、Fe、Mn、Cr的变化过程,分析了不同重金属之间、重金属与悬浮物(SS)之间的相关性。3次降雨径流中重金属质量浓度随降雨呈不同程度下降。大旱后的首次降雨径流重金属污染最严重,次日的降雨径流重金属污染最轻。降雨径流中各重金属均与SS在含量上明显相关,径流中的重金属主要以吸附在SS上的不溶态存在。屋面与路面径流中的大多数重金属具有良好的同源性。  相似文献   

10.
对比了中国大陆与台湾地区水质悬浮物的质量标准、排放标准以及检测方法标准。探讨大陆目前现行的与水质悬浮物相关标准的修订需求。提出,现有的质量标准修订时,应增加悬浮物指标,且可参考台湾的质量标准,适当放宽标准限值要求;现有的排放标准修订时,对于悬浮物指标,可参考台湾的排放标准,适当收紧标准限值要求;现有的检测方法标准修订时,可以增加称量恒重载体的种类,使用自身质量更轻的铝盘等载体,使检测结果更为稳定,分析过程更易掌握;增加质控样品的配制方法,提出质控要求,提高悬浮物测定项目的准确度与精密度水平。  相似文献   

11.
The development of the leather industry in the Aojiang watershed of Zhejiang province increased the release of waste water. In the waste water, ammonium nitrogen (NH+ 4-N) and germanium (Ge) are the main pollutants. In recent years, literature has documented that the intake of high concentrations of NH+ 4-N and Ge harms human health and biological species. This paper focuses on assessing the trends of NH+ 4-N and Ge concentrations in the released waste water in Aojiang watershed and on understanding their relationships with the released waste water using regression and correlation statistics. The paper also utilizes the integrated pollution index to evaluate the water quality in the watershed. Preliminary results show that, from 1992 to 1998, the concentrations of NH+ 4-N and total Ge increased 13 and 14 times, respectively, and they decreased somewhat after 1998. The concentrations of NH+ 4-N and total Ge are positively correlated to the amount of released waste water. These concentrations of NH+ 4-N and Ge, respectively, exceed 12 and 3 times, of the water standards. The water quality in the watershed degraded from Type III in 1992 to over Type V in 2003 when they were compared with the national water quality standards. It appeared that the pollution had positive correlation with leather industry production. The degraded water has no doubt affected human health and the ecosystem health. These results can provide scientific information for the local government to reasonably adjust the industry structure and reduce the pollution to protect the environment.  相似文献   

12.
Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.  相似文献   

13.
Precipitation and streamwater samples were collected from 16 November 1999 to 17 November 2000 in two watersheds at Acadia National Park, Maine, and analyzed for mercury (Hg) and dissolved inorganic nitrogen (DIN, nitrate plus ammonium). Cadillac Brook watershed burned in a 1947 fire that destroyed vegetation and soil organic matter. We hypothesized that Hg deposition would be higher at Hadlock Brook (the reference watershed, 10.2 μg/m2/year) than Cadillac (9.4 μg/m2/year) because of the greater scavenging efficiency of the softwood vegetation in Hadlock. We also hypothesized the Hg and DIN export from Cadillac Brook would be lower than Hadlock Brook because of elemental volatilization during the fire, along with subsequently lower rates of atmospheric deposition in a watershed with abundant bare soil and bedrock, and regenerating vegetation. Consistent with these hypotheses, Hg export was lower from Cadillac Brook watershed (0.4 μg/m2/year) than from Hadlock Brook watershed (1.3 μg/m2/year). DIN export from Cadillac Brook (11.5 eq/ha/year) was lower than Hadlock Brook (92.5 eq/ha/year). These data show that ∼50 years following a wildfire there was lower atmospheric deposition due to changes in forest species composition, lower soil pools, and greater ecosystem retention for both Hg and DIN.  相似文献   

14.
Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year’s investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r ≥ 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.  相似文献   

15.
Arsenic released by bottom sediments was determined by experiments in which the sediments were artificially re-suspended using a particle entrainment simulator (PES) to simulate river conditions. Sediment cores were collected from various tributaries to drinking water reservoirs in Connecticut spiked with arsenic, and run in the PES at simulated bed-flow shear stresses from 0.0 to 0.6 N/m2. Under equilibrium conditions, the dissolved fraction of arsenic was found to range from 8.3 to 22.1 μg/l, which in most cases exceeded EPA Maximum Contaminant Level (MCL) of 10 μg/l. Experimental results from these simulations have shown that bed-flow shear stress causes an increased concentration of dissolved arsenic, most notably at shear stresses of 0.4, 0.5, and 0.6 N/m2. For the solid phase under equilibrium, the concentrations of arsenic ranged between 71 and 275 mg/kg. The average concentration of arsenic on the solid phase as well as partitioning coefficient values (K p) were highest at initial shear stress. This was attributed to the higher fraction of colloidal material and finer organic particles in the suspended solid mixture. Particles of such nature proved to have higher affinity to arsenic. K p values were determined from PES data and were found to range from 4,687 to 24,090 l/kg. However, on a mass load basis, the amount of arsenic found in suspended sediment increased with the increase of shear stress. Similarly, the amount of arsenic in the solid phase increased significantly for sites with high Volatile Organic Carbon (VOC) content. Because of the influence of Total Suspended Solids (TSS) and VOC concentrations on K p, the use of the PES is more appropriate in obtaining K p values that would be found under real stream conditions when compared to the traditional way of measuring K p using a jar study technique.  相似文献   

16.
为精准治理流域非点源氮磷污染,基于SWAT模型,运用本地区第二次全国污染源普查数据和2000—2019年流域水文、水质数据,开展湘江永州流域非点源氮磷污染模拟。结果表明:湘江永州流域建立的SWAT模型具有较好的模拟效果,流域2005—2019年的总氮月均污染负荷为383.40~17 998.70 t/m;总磷月均污染负荷为64.62~567.86 t/m,总氮和总磷各月污染负荷均与各月降雨量呈显著相关关系;农田和林地是本流域总氮、总磷污染负荷总量最大的2种用地类型,但两者之间单位面积输出的污染负荷强度却相反,林地对流域水污染防控具有正面效应,农田种植面源污染是非点源氮磷污染治理的重点。  相似文献   

17.
Pathogens are the number one cause of impairments of assessed rivers and streams in the USA and pose a significant human health hazard. The Dry Run Creek Watershed in Northeast Iowa has been designated as impaired by the State of Iowa because of high levels of Escherichia coli bacteria. To investigate the nature of this impairment, land use and stream bank assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 13 different sites in the watershed, including pH, temperature, conductivity, dissolved oxygen, turbidity, total Kjeldahl nitrogen, ammonia-N, nitrate?+?nitrite-N, total phosphorus, and E. coli. In addition, benthic macroinvertebrate communities were analyzed at seven sites, and optical brightener tests were performed late in the season. Results identified segments of the watershed that were more prominent contributors of E. coli, and correlations were observed between levels of E. coli and several chemical parameters, including ammonia-N, total Kjeldahl nitrogen, and total phosphorus. Interestingly, distinct sites emerged as more prominent contributors of these elements during rain vs. non-rain events, suggesting different types of sources. Both the amount of rainfall and the time elapsed between the rain event and the sampling influenced E. coli levels during wet weather conditions. Nitrate?+?nitrite-N displayed a unique response to rain events compared with the other parameters, suggesting a different delivery route. Analyses of benthic macroinvertebrate communities were consistent with pollution trends. Collectively, these data suggest distinct agriculturally related E. coli contributions, as well as specific areas and practices for water quality improvement strategies. This study can serve as a resource for evaluating agricultural watersheds that are impaired for bacteria.  相似文献   

18.
Paleoecological reconstructions of forest stand histories for two upland watersheds at Acadia National Park in Maine were completed to support related watershed chemistry studies. The project hypothesis was that forest type and fire history influence long-term cycling and storage of atmospheric mercury and nitrogen within watersheds. The reconstructions document differences in major vegetation composition and disturbance between the burned and unburned watersheds during the past several centuries. Pollen and charcoal stratigraphies from organic sediment accumulations in forested wet depressions indicate that the present experimental design of contrasting disturbance and forest histories has persisted during recent centuries. The unburned watershed has been dominated by spruce (Picea rubens) and fir (Abies balsamea) for 500 years or more and has not recently burned or been substantially cleared. The burned watershed is dominated by a heterogeneous forest of patchy hardwood, mixed wood, and softwood stands. A large portion of this watershed burned severely in 1947 and probably more than once in the 1800s, and has supported heterogeneous successional forests for 200 years or longer. Overall, these results support the underlying premise that the experimental design of this watershed research can be used to infer landscape controls on biogeochemical processes.  相似文献   

19.
Pesticide applications to agricultural lands in California, USA, are reported to a central data base, while data on water and sediment quality are collected by a number of monitoring programs. Data from both sources are geo-referenced, allowing spatial analysis of relationships between pesticide application rates and the chemical and biological condition of water bodies. This study collected data from 12 watersheds, selected to represent a range of pesticide usage. Water quality parameters were measured during six surveys of stream sites receiving runoff from the selected watershed areas. This study had three objectives: to evaluate the usefulness of pesticide application data in selecting regional monitoring sites, to provide information for generating and testing hypotheses about pesticide fate and effects, and to determine whether in-stream nitrate concentration was a useful surrogate indicator for regional monitoring of toxic substances. Significant correlations were observed between pesticide application rates and in-stream pesticide concentrations (p < 0.05) and toxicity (p < 0.10). In-stream nitrate concentrations were not significantly correlated with either the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.30). Neither total watershed area nor the area in which pesticide usage was reported correlated significantly with the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.14). In-stream pesticide concentrations and effects were more closely related to the intensity of pesticide use than to the area under cultivation.  相似文献   

20.
This study aims to find an appropriate way to minimize water utility in the petrochemical and petroleum industries due to high rate of water consumption. For this purpose, Tehran oil refinery has been well studied. In this research, three key contaminants including suspended solid, hardness as well as COD have been considered to analyze the water network. In addition, the potential of water reuse was studied for all methods. These key contaminants once were analyzed separately as a single contaminant and the amount of required freshwater was calculated for them. In this stage, amount of freshwater was reduced to about 60.9 (17%), 203 (59.7%) and 143 m3/h (42.5%) in terms of suspended solids, hardness, and COD, respectively. Water minimization within operations for suspended solids is less than two others. Therefore, this is a limiting contaminant and can be selected as a key contaminant. In the next stage, three contaminants were analyzed two by two based on their mass transfer. Results show that, in the targeting for minimization based on the suspended solids and hardness, the amount of required water is reduced to 142.74 m3/h or 42%. This amount for suspended solids and COD is equal to 86.3 m3/h (26%) and for COD and hardness is 124 m3/h (37%). Analyzing the methods shows that the method based on the double contaminant gives more precise results rather than single contaminant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号