首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment method for ecological condition of Xiangxi River system was studied by using 13 candidate metrics of epilithic diatom which can reflect conditions in pH, salinity, nitrogen uptake metabolism, oxygen requirements, saprobity, trophic state, morphological character and pollution tolerant capability etc. By one-way ANOVA, the metrics of relative abundance of acidobiontic algae (ACID), freshwater algae (FRESH), high oxygen requirement (HIGH-O), eutraphentic state (EUTRA) and mobile taxa (MOBILE) were suitable for distinguishing sites in different conditions. Then, the river diatom index (RDI) composed of these five metrics was used to evaluate ecological condition of the river. The results showed that the healthiest sites were in the Guanmenshan Natural Reserve (with the mean RDI of 79.73). The sites located in tributary of Jiuchong River also owned excellent state (mean RDI of 78.25). Mean RDI of another tributary – Gufu River and the main river were 70.85 and 68.45 respectively, and the unhealthiest tributary was Gaolan River (with mean RDI of 65.64). The mean RDI for all the 51 sites was 71.40. The competence of RDI was discussed with comparison of evaluation results of DAIpo and TDI, it can be concluded that multimetrics is more competent in assessment task.  相似文献   

2.
Thailand currently lacks formal bioassessment approaches and protocols to assist management decisions for water quality. The aim of this research is to develop a practical method of rapid bioassessment for a professional level by using benthic macroinvertebrate assemblages for streams in Thailand. Eleven reference and nine test sites were sampled in the headwater streams of the Loei River and adjacent areas to explore the development of a practical protocol. Specific physico-chemical parameters were selected to provide ecological information supplemental to the biological indicators. The biological research was designed around the USEPA Rapid Bioassessment Protocols (RBPs) using the multi-habitat approach. Four fixed-count subsamplings (100, 200, 300 and 500 organisms) were randomly conducted using a standardized gridded pan to evaluate an appropriate level for bioassessment in Thai streams. A 300 organism subsample is adequate for bioassessment purposes in Thai stream (evaluated by calculating dissimilarity values and ordination techniques). A systematic selection of candidate reference sites, metric selection, and index calibration was part of this research. Multimetric and multivariate analyses were examined as a foundation for bioassessment in Thailand. The multimetric approach appears to be more practical for a rapid bioassessment technique. Nine core metrics were identified for biological index score including number of total taxa, Diptera taxa, Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera taxa, (%) Plecoptera, (%) Tolerant organisms, Beck's Biotic Index, (%) Intolerant organisms, Shredders taxa and Clingers taxa were calibrated for the final index. As a result of multimetric and multivariate analyses, family level identification data effectively discriminated reference condition and broad-scale environmental gradients. Hampered by incomplete taxonomic knowledge of benthic macroinvertebrates in Thailand, family-level identification may be sufficient taxonomic resolution for rapid bioassessment in Thailand.  相似文献   

3.
The number of sites sampled must be considered when determining the effort necessary for adequately assessing taxa richness in an ecosystem for bioassessment purposes; however, there have been few studies concerning the number of sites necessary for bioassessment of large rivers. We evaluated the effect of sample size (i.e., number of sites) necessary to collect vertebrate (fish and aquatic amphibians), macroinvertebrate, and diatom taxa from seven large rivers in Oregon and Washington, USA during the summers of 2006–2008. We used Monte Carlo simulation to determine the number of sites needed to collect 90–95% of the taxa 75–95% of the time from 20 randomly located sites on each river. The river wetted widths varied from 27.8 to 126.0 m, mean substrate size varied from 1 to 10 cm, and mainstem distances sampled varied from 87 to 254 km. We sampled vertebrates at each site (i.e., 50 times the mean wetted channel width) by nearshore-raft electrofishing. We sampled benthic macroinvertebrates nearshore through the use of a 500-μm mesh kick net at 11 systematic stations. From each site composite sample, we identified a target of 500 macroinvertebrate individuals to the lowest possible taxon, usually genus. We sampled benthic diatoms nearshore at the same 11 stations from a 12-cm2 area. At each station, we sucked diatoms from soft substrate into a 60-ml syringe or brushed them off a rock and rinsed them with river water into the same jar. We counted a minimum of 600 valves at 1,000× magnification for each site. We collected 120–211 diatom taxa, 98–128 macroinvertebrate taxa, and 14–33 vertebrate species per river. To collect 90-95% of the taxa 75-95% of the time that were collected at 20 sites, it was necessary to sample 11–16 randomly distributed sites for vertebrates, 13–17 sites for macroinvertebrates, and 16–18 sites for diatoms. We conclude that 12–16 randomly distributed sites are needed for cost-efficient sampling of vertebrate richness in the main stems of our study rivers, but 20 sites markedly underestimates the species richness of benthic macroinvertebrates and diatoms in those rivers.  相似文献   

4.
Rapid bioassessment (RBA) techniques for evaluating river health are now commonplace and there is much debate on the best methods that should be used. One of the important features of RBA is subsampling of large qualitative or semi-quantitative samples to reduce the costs associated with handling and identifying animals. In Australia, the Australian River Assessment System (known as “AusRivAS”) has been widely used since 1994 to monitor and assess river health. To test the efficacy of AusRivAS protocols, four live-sorting protocols, the standard Australian River Assessment Scheme (AusRivAS) and three suggested improvements, were evaluated in three habitat types and in clear and turbid rivers. The suggested improvements included using magnification during the live-sort process, separate sorting of coarse and fine fractions and increasing the amount of time or animals collected. There was no statistically significant difference between any of the trialed live-sort protocols in terms of the number of taxa collected compared to the number remaining, the community composition, the abundances of individual families collected, or the AusRivAS Observed/Expected taxa ratios. The lack of differences between the live-sort protocols suggests that technicians using the current standard AusRivAS protocols are able to effectively obtain a representative subsample of animals from the whole kick or sweep net qualitative sample. This has the advantage of cost savings because no retraining will be required, field procedures will remain uncomplicated and previous river health assessments will remain valid.  相似文献   

5.
Urbanization can cause significant changes in the integrity of fluvial ecosystems, which makes it necessary to assess environmental conditions of areas where population growth rates are high. A study of the environmental quality of Chorrillos River (San Luis-Argentina) and its tributaries was carried out in order to evaluate the potential effect of an urbanization gradient. Six sites were sampled along the main course and tributaries of the river. Urbanization variables were measured and included to calculate an Urbanization Index. Physical–chemical analyses were performed in water samples to evaluate water quality through the use of a simplified index of water quality (SIWQ). Plants, macroinvertebrates, and amphibians metrics were used to assess the biological state of the studied sites. The Urbanization Index varied significantly between sites and was significantly correlated to the SIWQ. However, no significant correlations were found between SIWQ and macroinvertebrates and amphibians variables. Water quality of Chorrillos River and its tributaries is good, but it is affected by anthropic influences as reflected by the declining of SIWQ values. Although biological sampling constitutes an important tool in the assessment of water quality of rivers, in this report biological results were not conclusive.  相似文献   

6.
Aquatic organisms’ tolerance to water pollution is widely used to monitor and assess freshwater ecosystem health. Tolerance values (TVs) estimated based on statistical analyses of species-environment relationships are more objective than those assigned by expert opinion. Region-specific TVs are the basis for developing accurate bioassessment metrics particularly in developing countries, where both aquatic biota and their responses to human disturbances have been poorly documented. We used principal component analysis to derive a synthetic gradient for four stressor variables (total nitrogen, total phosphorus, dissolved oxygen, and % silt) based on 286 sampling sites in the Taihu Lake and Qiantang River basins (Yangtze River Delta), China. We used the scores of taxa on the first principal component (PC1), which explained 49.8 % of the variance, to estimate the tolerance values (TVr) of 163 macroinvertebrates taxa that were collected from at least 20 sites, 81 of which were not included in the Hilsenhoff TV lists (TVh) of 1987. All estimates were scaled into the range of 1–10 as in TVh. Of all the taxa with different TVs, 46.3 % of TVr were lower and 52.4 % were higher than TVh. TVr were significantly (p?<?0.01, Fig. 2), but weakly (r 2?=?0.34), correlated with TVh. Seven biotic metrics based on TVr were more strongly correlated with the main stressors and were more effective at discriminating references sites from impacted sites than those based on TVh. Our results highlight the importance of developing region-specific TVs for macroinvertebrate-based bioassessment and to facilitate assessment of streams in China, particularly in the Yangtze River Delta.  相似文献   

7.
为支撑流域水生态目标的业务化管理,提高水生态监测和评价的可操作性,突破物种分类鉴定的技术瓶颈,以大型底栖无脊椎动物为研究对象,在江苏省太湖流域布设120个采样点,于2013年1—3月、7—8月和10—11月开展3次监测。以最小干扰为参照状态,对涉及物种丰度、物种多度组成、耐污能力和摄食类群的72个候选指数进行分布范围、判别能力及相关性分析,结合指数获取的便利性及物种分类的难易程度,最终筛选出3个核心指数构成大型底栖无脊椎动物完整性业务化评价指数,其中湖荡、河流和水库的指数为软体动物分类单元数、优势分类单元相对多度和BMWP指数,溪流的指数为ETO分类单元数、前三位优势分类单元相对多度和BMWP指数。经验证,业务化指数与环境梯度有较好的响应关系,且可操作性强,具备开展业务化应用的前景。但目前的流域水生态目标管理尚处于摸索阶段,技术体系还须在业务化过程中不断修正和完善。  相似文献   

8.
Despite the demonstrated utility of the Australian River Assessment Scheme (AUSRIVAS) to provide national-scale information on the biological condition of rivers, there is no commensurate scheme that can provide standardised information on physical habitat. Existing habitat assessment methods are not suitable for implementation on a national scale, so we present a new habitat assessment protocol that incorporates favorable elements of existing methods. Habitat Predictive Modelling forms the basis for the protocol because it can predict the occurrence of local-scale features from large-scale data, uses the reference condition concept, can be modified to incorporate a range of biologically and geomorphologically relevant variables, and employs a rapid survey approach. However, the protocol has been augmented with geomorphological variables and incorporates principles of hierarchy and geomorphological river zonation. There are four sequential components to the implementation of the protocol: reference site selection, data collection, predictive model construction and assessment of test sites using the predictive models. Once implemented, the habitat assessment protocol will provide a standardised tool for the assessment of river habitat condition at a variety of governance levels.  相似文献   

9.
Government environment protection policies for waterways have traditionally relied on water quality indicators and their objectives. In this paper we describe the development of biological objectives based on invertebrate indicators for inclusion in a government policy for the catchment of Western Port Bay, Victoria. The first step of defining segments (areas with streams in which the same objectives are applied) was problematic, requiring two different approaches, as follows. Site groups initially based on invertebrate community composition derived using multivariate techniques (ordination and classification) proved to be unsuitable for policy segments. Segment boundaries were subsequently defined using topographical (e.g. boundary of foothills and lowland plains), climate (e.g. rainfall) and land-use (e.g. urban) features. We used information and data from reference sites inside as well outside the catchment to derive specific biological objectives based on aquatic invertebrates for these segments. Objectives were specified for the following four indicators--number of invertebrate families, the SIGNAL index, the AUSRIVAS predictive model and the number of key families.  相似文献   

10.
The objectives of the Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE) are to (1) develop and demonstrate, in collaboration with states, an assessment program yielding spatially unbiased estimates of the condition of mid-continent great rivers; (2) evaluate environmental indicators for assessing great rivers; and (3) assess the current condition of selected great river resources. The purpose of this paper is to describe EMAP-GRE using examples based on data collected in 2004-2006 with emphasis on an approach to determining reference conditions. EMAP-GRE includes the Upper Mississippi River, the Missouri River, and the Ohio River. Indicators include biotic assemblages (fish, macroinvertebrates, plankton, algae), water chemistry, and aquatic and riparian physical habitat. Reference strata (river reaches for which a single reference expectation is appropriate) were determined by ordination of the fish assemblage and examination of spatial variation in environmental variables. Least disturbed condition of fish assemblages for reference strata was determined by empirical modeling in which we related fish assemblage metrics to a multimetric stressor gradient. We inferred least disturbed condition from the y-intercept, the predicted condition when stress was least. Thresholds for dividing the resource into management-relevant condition classes for biotic indicators were derived using predicted least disturbed condition to set the upper bound on the least disturbed condition class. Also discussed are the outputs of EMAP-GRE, including the assessment document, multimetric indices of condition, and unbiased data supporting state and tribal Clean Water Act reporting, adaptive management, and river restoration.  相似文献   

11.
利用生物完整性指数评价河流健康状态,对于水环境管理决策具有重要的实践意义。基于大型底栖动物构建生物完整性指数(B-IBI),并评价松花江流域的水生态系统健康状况。在松花江主要干支流设定37个采样点,分别于2016年6、9月进行环境因子和大型底栖动物调查研究。最终从28个候选参数中确定了种类总数、摇蚊种类数、敏感种百分比、Hilsenhoff指数、Marglef指数作为核心参数构建B-IBI。通过0~10赋分法,计算得到了松花江流域全部采样点的生物完整性评价得分。结果显示,松花江流域内60%区域生物状态存在不同程度的损害。另外,B-IBI能够综合反映松花江大型底栖动物群落多样性、生境质量、理化水质等,具有一定的适用性。  相似文献   

12.
Portions of the Boulder River watershed contain elevated concentrations of arsenic, cadmium, copper, lead, and zinc in water, sediment, and biota. We measured concentrations of As, Cd, Cu, Pb, and Zn in biofilm and macroinvertebrates, and assessed macroinvertebrate assemblage and aquatic habitat with the objective of monitoring planned remediation efforts. Concentrations of metals were generally higher in downstream sites compared with upstream or reference sites, and two sites contained metal concentrations in macroinvertebrates greater than values reported to reduce health and survival of resident trout. Macroinvertebrate assemblage was correlated with metal concentrations in biofilm and macroinvertebrates. However, macroinvertebrate metrics were significantly correlated with a greater number of biofilm metals (8) than metals in invertebrates (4). Lead concentrations in biofilm appeared to have the most significant impact on macroinvertebrate assemblage. Metal concentrations in macroinvertebrates were directly proportional to concentrations in biofilm, indicating biofilm as a potential surrogate for monitoring metal impacts in aquatic systems.  相似文献   

13.
Many organizations in the USA collect aquatic bioassessment data using different sampling and analysis methods, most of which have unknown performance in terms of data quality produced. Thus, the comparability of bioassessments produced by different organizations is often unknown, ultimately affecting our ability to make comprehensive assessments on large spatial scales. We evaluated a pilot approach for determining bioassessment performance using macroinvertebrate data obtained from several states in the Southeastern USA. Performance measures evaluated included precision, sensitivity, and responsiveness to a human disturbance gradient, defined in terms of a land disturbance index value for each site, combined with a value for specific conductance, and instream habitat quality. A key finding of this study is the need to harmonize ecoregional reference conditions among states so as to yield more comparable and consistent bioassessment results. Our approach was also capable of identifying potential areas for refinement such as reevaluation of less precise, sensitive, or responsive metrics that may result in suboptimal index performance. Higher performing bioassessments can yield information beyond “impaired” versus “unimpaired” condition. Acknowledging the limitations of this pilot study, we would recommend that performance evaluations use at least 50 sites, 10 of which are ecoregional reference sites. Efforts should be made to obtain data from the entire human disturbance gradient in an ecoregion to improve statistical confidence in performance measures. Having too few sites will result in an under-representation of certain parts of the disturbance gradient (e.g., too few poor quality sites), which may bias sensitivity and responsiveness estimates.  相似文献   

14.
The primary goal of this study was to characterize physical habitat and benthic communities (macroinvertebrates) in the Stanislaus, Tuolumne and Merced Rivers in California’s San Joaquin Valley in 2003. These rivers have been listed as impaired water bodies (303 (d) list) by the State of California due to the presence of organophosphate (OP) insecticides chlorpyrifos and diazinon, Group A pesticides (i.e., organochlorine pesticides), mercury, or unknown toxicity. Based on 10 instream and riparian physical habitat metrics, total physical habitat scores in the Stanislaus River ranged from 124 to 188 (maximum possible total score is 200). The highest total habitat score was reported at the upstream site. Tuolumne River physical habitat scores ranged from 86 to 167. Various Tuolumne River physical habitat metrics, including total habitat score, increased from downstream to upstream in this river. Merced River physical habitat scores ranged from 121 to 170 with a significant increase in various physical habitat metrics, including total habitat score, reported from downstream to upstream. Channel flow (an instream metric) and bank stability (a riparian metric) were the most important physical habitat metrics influencing the various benthic metrics for all three rivers. Abundance measures of benthic macroinvertebrates (5,100 to 5,400 individuals) were similar among the three rivers in the San Joaquin watershed. Benthic communities in all three rivers were generally dominated by: (1) Baetidae species (mayflies) which are a component of EPT taxa generally considered sensitive to environmental degradation; (2) Chironomidae (midges) which can be either tolerant or sensitive to environmental stressors depending on the species; (3) Ephemerellidae (mayflies) which are considered sensitive to pollution stress; and (4) Naididae (aquatic worms) which are generally considered tolerant to environmental stressors. The presence of 117 taxa in the Stanislaus River, 114 taxa in the Tuolumne River and 96 taxa in the Merced River implies that the benthic communities in these streams are fairly diverse but without a clear definition of benthic community expectations it is unknown if these water bodies are actually impaired.  相似文献   

15.
We conducted an aquatic macroinvertebrate assessment in the channelized reach of the lower Missouri River, and used statistical analysis of individual metrics and multimetric scores to identify community response patterns and evaluate relative biological condition. We examined longitudinal site differences that are potentially associated with water qualityrelated factors originating from the Kansas City metropolitan area, using data from coarse rock substrate in flowing water habitats (outside river bends), and depositional mud substratein slack water habitats (dike fields). Three sites above rivermile (RM) 369 in Kansas City (Nebraska City, RM = 560; St. Joseph, RM = 530; Parkville, RM = 377) and three below (Lexington, RM = 319; Glasgow, RM = 228; Hermann, RM = 94) were sampled with rock basket artificial substrates, a qualitative kicknet method, and the Petite Ponar. We also compared the performance of the methods used. A total of 132 aquatic macroinvertebrate taxa were collected from the lower Missouri River; one third of these taxa belonged to the sensitiveEPOT insect orders (Ephemeroptera, Plecoptera, Odonata, and Trichoptera). Rock baskets had the highest mean efficiency (34.1%) of the methods, and the largest number of taxa was collected by Ponar (n = 69) and kicknet (n = 69) methods. Seven of the 15 metrics calculated from rock basket data, and five ofthe nine metrics calculated from Ponar data showed highly significant differences (ANOVA, P < 0.001) at one or more sitesbelow Kansas City. We observed a substantial reduction in net-spinning Trichoptera in rock habitats below Kansas City (Lexington), an increase in relative dominance of Oligochaeta in depositional habitats at the next site downstream (Glasgow), and lower relative condition scores in rock habitat at Lexingtonand depositional habitat at Glasgow. Collectively, these data indicate that some urban-related impacts on the aquatic macroinvertebrate community are occurring. Our results suggest that the methods and assessment framework we used in this studycould be successfully applied on a larger scale with concurrentwater and sediment chemistry to validate metrics, establish impairment levels, and develop a specific macroinvertebrate community index for the lower Missouri River. We recommend accomplishing this with longitudinal multi-habitat sampling at a larger number of sites related to all potential sources of impairment, including major tributaries, urban areas, and point sources.  相似文献   

16.
Diatoms and macroinvertebrates have been extensively used as water quality indicators in Europe for the last two decades. In Portugal, the use of biological indicators to assess water quality in rivers has increased greatly. The aim of this work was to assess the water quality and ecological status of the Ul River in order to evaluate its ability for the establishment of a fluvial beach, using periphytic diatoms and macroinvertebrates as indicators. Four sites were selected along the Ul River. At each site, biological, physical, and chemical parameters were investigated. Epilithic diatoms and macroinvertebrates were sampled. The Specific Polluosensitivity Index and the Biological Diatom Index were applied to diatom data, while for macroinvertebrates, the Iberian Biological Monitoring Working Party (IBMWP) was used. According to the results obtained, it was possible to conclude that up to now, this river does not possess the ideal conditions for the establishment of a fluvial beach. We concluded that epilithic diatoms and macroinvertebrates provided consistent information on water quality assessment and can be used as biological indicators of the water quality in Ul River.  相似文献   

17.
The Mid-Atlantic Highlands Assessment (MAHA) included the sampling of macroinvertebrates from 424 wadeable stream sites to determine status and trends, biological conditions, and water quality in first through third order streams in the Mid-Atlantic Highlands Region (MAHR) of the United States in 1993–1995. We identified reference and impaired sites using water chemistry and habitat criteria and evaluated a set of candidate macroinvertebrate metrics using a stepwise process. This process examined several metric characteristics, including ability of metrics to discriminate reference and impaired sites, relative scope of impairment, correlations with chemical and habitat indicators of stream disturbance, redundancy with other metrics, and within-year variability. Metrics that performed well were compared with metrics currently being used by three states in the region: Pennsylvania, Virginia, and West Virginia. Some of the metrics used by these states did not perform well when evaluated using regional data, while other metrics used by all three states in some form, specifically number of taxa, number of EPT taxa, and Hilsenhoff Biotic Index, performed well overall. Reasons for discrepancies between state and regional evaluations of metrics are explored. We also provide a set of metrics that, when used in combination, may provide a useful assessment of stream conditions in the MAHR.  相似文献   

18.
Spatial autocorrelation in ecological systems is a critical issue for monitoring (and a general understanding of ecological dynamics) yet there are very few data available, especially for riverine systems. Here, we report here on assemblage-level autocorrelation in the benthic-invertebrate assemblages of riffles in two adjacent, relatively pristine rivers in south-eastern Victoria, Australia (40-km reaches of the Wellington [surveys in summers of 1996 and 1997] and Wonnangatta Rivers [survey in summer of 1996 only], with 16 sites in each river). We found that analyses were similar if the data were resolved to family or to species level. Spatial autocorrelation was assessed by using Mantel-tests for the data partitioned into different sets of spatial separations of survey sites (e.g. 0–6 km, 6–12 km, etc.). We found strong small-scale (≤6 km) autocorrelation in the Wellington River, which is consistent with known dispersal abilities of many aquatic invertebrates. Surprisingly, there were strong negative correlations at longer distance classes for the Wellington River in one of the two summers (20–40 km) and the Wonnangatta River (12–20 km). That two largely unimpacted, adjacent rivers should have such different autocorrelation patterns suggests that impact assessment cannot assume dependence or independence of sites a priori. We discuss the implications of these results for use of “reference” sites to assess impacts at nominally affected sites.  相似文献   

19.
In this investigation we evaluated the performance of multiple metrics, based on benthic macroinvertebrates, to assess nutrient enrichment in impounded rivers. Field studies were conducted in the upper reaches of four impounded mountain rivers (Tormes, Riaza, Eresma and Miraflores Rivers) of Central Spain. The watersheds of these rivers are underlain by siliceous rocks. Two sampling sites, upstream and downstream from the reservoir, were established in stony riffles of each impounded river. We used a total of 34 metrics, representing five different metric groups: measures of abundance and richness, percentages of taxonomic groups, percentages of functional feeding groups, measures of dominance and diversity, and biotic indices. Evaluation of different metrics was mainly based on correlation analyses between concentrations of nutrients (NO3-N, NH4-N, PO4-P) and values of individual metrics. Deep releases from the reservoirs were the primary cause responsible for the nutrient enrichment at downstream sampling sites. Chironomidae density, Gastropoda density, % Chironomidae, % Gastropoda, % collector-gatherers and scrapers, proportion of the two most dominant taxa, and Camargo's dominance index exhibited the highest positive correlation coefficients. Conversely, Plecoptera density, Trichoptera density, EPT richness, % Plecoptera, % Trichoptera, % collector-filterers, % predators, % shredders, Simpson's and Camargo's diversity indices, and the average BMWQ score (biotic index) exhibited the highest negative correlation coefficients. Overall it is concluded that the multimetric approach may be a useful technique for the biological assessment of nutrient enrichment in fluvial ecosystems, particularly in upper reaches of siliceous rivers.  相似文献   

20.
U.S. EPA Region IX is supporting bioassessment programs in Arizona, California, Hawaii and Nevada using biocriteria program and Regional Environmental Monitoring and Assessment Program (R-EMAP) resources. These programs are designed to improve the state, tribal and regional ability to determine the status of water quality. Biocriteria program funds were used to coordinate with Arizona, California and Hawaii which resulted in these states establishing reference conditions and in developing biological indices. U.S. EPA Region IX has initiated R-EMAP projects in California and Nevada. These U.S. EPA Region IX sponsored programs have provided an opportunity to interact with the States and provide them with technical and management support. In Arizona, several projects are being conducted to develop the State's bioassessment program. These include the development of a rotational random monitoring program; a regional reference approach for macroinvertebrate bioassessments; ecoregion approach to testing and adoption of an alternate regional classification system; and development of warm-water and cold-water indices of biological integrity. The indices are projected to be used in the Arizona Department of Environmental Quality (ADEQ) 2000 water quality assessment report. In California, an Index of Biological Integrity (IBI) has been developed for the Russian River Watershed using resources from U.S. EPA's Non-point Source (NPS) Program grants. A regional IBI is under development for certain water bodies in the San Diego Regional Water Quality Control Board. Resources from the U.S. EPA Biocriteria program are being used to support the California Aquatic Bioassessment Workgroup (CABW) in conjunction with the California Department of Fish & Game (CDFG), and to support the Hawaii Department of Health (DoH) Bioassessment Program to refine biological metrics. In Nevada, R-EMAP resources are being used to create a baseline of aquatic information for the Humboldt River watershed. U.S. EPA Region IX is presently working with the Nevada Division of Environmental Protection (NDEP) to establish a Nevada Aquatic Bioassessment Workgroup. Future R-EMAP studies will occur in the Calleguas Creek watershed in Southern California, and in the Muddy and Virgin River watersheds in southern Nevada, and the Walker River watershed in eastern California and west-central Nevada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号