首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
挖掘湖泊底泥避免水体富营养化的探讨   总被引:5,自引:0,他引:5  
挖掘湖泊底泥是减少富营养化湖泊内源性氮、磷元素的主要手段,但若挖掘不当,则一段时间内可能会导致水体氮、磷平衡破坏,富营养化加剧,从湖泊底泥挖掘可能导致水体营养元素平衡破坏的成因入手,探讨了避免水体富营养化加剧的对策。  相似文献   

2.
磷是生态系统中必不可少的营养元素,其含量与水体的营养程度密切相关,过剩的磷会导致水体富营养化,使生态平衡遭到破坏.就不同水体沉积物中磷的形态进行了分类综述,归纳总结了不同水体沉积物中磷的形态以及分布特征,并且进一步概述了影响沉积物中磷向水体释放的因素.  相似文献   

3.
洋河水库蓝藻水华爆发预测影响因子研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了预测洋河水库富营养化变化趋势和蓝藻水华爆发的风险,对洋河水库水体进行采样,分析其环境质量.研究结果表明,近年来洋河水库叶绿素a含量处于高位,氮、磷含量不断上升,特别是总氮质量浓度在5 mg/L左右,主要以硝态氮的形式存在,富营养化程度不断加剧,具有大规模爆发蓝藻水华的风险.对洋河水库藻华爆发的环境条件进行分析,提出...  相似文献   

4.
洞庭湖的富营养化研究   总被引:5,自引:0,他引:5  
分析了洞庭湖水体中氮、磷分布情况,采用指数评价法和浮游植物评价法划分了洞庭湖的营养类型,阐述了总磷与洞庭湖富营养化的关系,提出了减少总磷和防止湖泊富营养化的对策。  相似文献   

5.
藻类大量死亡后极易产生致嗅物.我们模拟了藻类的生长死亡过程,观测除藻后水体理化性质和生物性质的改变情况以及致嗅物的成分及浓度,以确定致嗅物质产生的途径.由于藻类死亡后细胞解体,藻类细胞中的氮、磷物质释放到水体中,导致水体的富营养化程度反而升高,而叶绿素-a也呈现下降趋势,整个试验过程后期溶解氧为0,水体产生嗅味物质,可采用吹扫捕集/固相微萃取—气相色谱—质谱法和顶空固相微萃取气质联用法分析致嗅物质.实验证明,当藻型湖泊的藻类被基本去除后,整个水体的初级生产力受到严重的破坏,威胁到水生态系统的安全性,可导致水体进一步恶化.  相似文献   

6.
黄河口的水质、底质污染及其变化   总被引:16,自引:0,他引:16  
分析了2001年在黄河口附近所取的3处水样和3处泥样中污染物的含量,并与历史数据进行了比较.利用<地表水环境质量标准>(GB3838-2002)和美国国家海洋大气管理局(NOAA)水体泥沙质量标准等分别对水体和底泥中的重金属(砷)和氮磷污染进行了评价.认为黄河口的水污染严重,主要污染物为汞和氮;泥沙污染尚不严重,但污染物的增长率高;水体中较高的氮含量和泥沙中氮含量的迅速增高可能会对渤海湾的富营养化情况产生影响.  相似文献   

7.
利用分级提取法分析了玄武湖的沉积磷形态,在玄武湖沉积物中,铝结合态磷的含量较低,平均值为64 mg/kg,其余形态磷中,铁结合态磷为241 mg/kg,有机磷为335 mg/kg,钙结合态磷为394 mg/kg.在环境变化的条件下,铁结合态磷可以释放到间隙水和上层水体中,是湖泊产生富营养化的重要因素;铝结合态磷由于含量少,对湖泊富营养化影响很小;钙结合态磷相对稳定且很难被生物利用,对湖泊富营养化影响不大;有机磷对水体有机负荷影响较大,并影响水体富营养化程度.  相似文献   

8.
滴水湖水质现状及保护初探   总被引:7,自引:0,他引:7  
滴水湖的水源大治河水质较差,总体为V类。滴水湖生态系统脆弱,水体已呈富营养化,2006年—2008年连续3年的湖水年平均富营养化指数(TLI)均超过了70,透明度呈逐年下降趋势,氮、磷是滴水湖污染最重要的因素。据此,提出了"立法先行、加强监管、污染控制、生态修复、硬件保障、科技创新"的滴水湖水质保护思路。  相似文献   

9.
浅水湖泊底泥与上覆水间磷迁移规律的研究   总被引:2,自引:0,他引:2  
以浅水湖泊中磷在底泥与上覆水间的迁移规律为研究对象,介绍了风浪扰动、微生物、水体pH值、氧化还原条件、底泥吸附与解吸等环境因素对磷的迁移影响.  相似文献   

10.
南通市区河流底泥营养物质污染特征及环境风险分析   总被引:1,自引:0,他引:1  
以南通市区的学田河、南川河、法伦寺河、城山河及西山河为研究对象,测定了河流表层底泥中的有机质、总氮、氨氮、硝氮、总磷、无机磷及活性有机磷等营养物质指标,分析了污染最重的监测点的污染原因。此外,采用有机指数法、营养物质比值法进行了环境风险评价。得出各条河流底泥均为肥污染级,尤其污染最重的是西山河;各研究河流底泥的碳氮比都很高,说明其营养物质主要来源于周围环境;学田河和西山河底泥的氮磷比较高,说明它们的富营养化程度相对较高。通过回归分析,得出学田河、南川河、法伦寺河及城山河底泥中有机质与总氮及南川河有机质与总磷之间具有良好的线性相关性。  相似文献   

11.
The aim of this study was to better understand the fate of nutrients discharged by sewage treatment plants into an intermittent Mediterranean river, during a low-flow period. Many pollutants stored in the riverbed during the low-flow period can be transferred to the downstream environments during flood events. The study focused on two processes that affect the fate and the transport of nutrients, a physical process (retention in the riverbed sediments) and a biological process (denitrification). A spatial campaign was carried out during a low-flow period to characterize the nutrient contents of both water and sediments in the Vène River. The results showed high nutrient concentrations in the water column downstream of the treated wastewater disposal (up to 13,315 μg N/L for ammonium and 2,901 μg P/L for total phosphorus). Nutrient concentrations decreased rapidly downstream of the disposal whereas nutrient contents in the sediments increased (up to 1,898 and 784 μg/g for total phosphorus and Kjeldahl nitrogen, respectively). According to an in situ experiment using sediment boxes placed in the riverbed for 85 days, we estimated that the proportion of nutrients trapped in the sediments represents 25% (respectively 10%) of phosphorus (respectively nitrogen) loads lost from the water column. In parallel, laboratory tests indicated that denitrification occurred in the Vène River, and we estimated that denitrification likely coupled to nitrification processes during the 85 days of the experiment was significantly involved in the removal of nitrogen loads (up to 38%) from the water column and was greater than accumulation processes.  相似文献   

12.
Suspended sediment and nutrient loadings from agricultural watersheds have lead to habitat degradation in Lake Takkobu. To examine their relationships with land-use activities, we monitored sediment, nutrient and water discharges into the lake for a 1-year sampling period. The Takkobu River contributed the largest portion of the annual water discharge into the lake, compared with the other tributaries. During dry conditions, lake water flowed into the Kushiro River, and conversely during flooding, Kushiro River water flowed into the lake. Inflows from the Kushiro River had a high proportion of inorganic matter, with high concentrations of total nitrogen and total phosphorus, attributed to agricultural land-use development and stream channelization practiced since the 1960s in the Kushiro Mire. Nutrient loadings from these two rivers were significantly higher during flooding than in dry conditions. However, there was no clear correlation between river discharge and nutrient concentrations. Since land-use activities in the Kushiro River and Takkobu River watersheds were concentrated near rivers, nutrients easily entered the drainage system under low flow conditions. In contrast, water discharged from small, forest-dominated watersheds contained a low proportion of inorganic matter, and low nutrient concentrations. The suspended sediment delivered to the lake during the sample period was estimated as approximately 607 tons, while the total nitrogen and total phosphorus inflows were about 10,466 and 1,433 kg, respectively. Suspended sediment input into the lake was 65%, and total nitrogen and total phosphorus were 40% and 48%, respectively, being delivered by the Kushiro River.  相似文献   

13.
对阳宗海表层沉积物中磷、氟、硫的含量进行了调查,并用单指标标准指数法对污染水平进行了评价.结果表明,阳宗海表层沉积物磷、氟、硫含量的平均值依次为1 041 mg/kg、1 075 mg/kg、2 743 mg/kg.生活、生产污水、工业废气,以及机动船只、网箱养鱼等活动是阳宗海表层沉积物中磷、氟、硫的主要来源.磷、氟、...  相似文献   

14.
Qinghai Lake, situated on the Qinghai–Tibet plateau, is the largest lake in China. In this study, the water and sediment quality were investigated in Qinghai Lake, three sublakes, and five major tributaries. Both Na+ and Cl? were found to be the major ions present in Qinghai Lake and the three sublakes, while Ca2+ and HCO3? dominated the tributaries. Compared with historical data from the 1960s, the concentrations of NH4 +, NO3 ?, and soluble reactive silica have increased considerably, likely caused by increased human activities in the area. Compared to the historical data, chemical oxygen demand has increased and lake water transparency has decreased, likely related to an increase in nutrient levels. Relatively high concentrations of total nitrogen (TN) and total phosphorus (TP) were observed in Qinghai Lake sediments, although P fraction types and low water concentrations of these two indicate low possibility of transfer into the water column. The ratios of C/N suggest that the organic matter in the sediments are primarily from autochthonous sources. TN and total organic carbon in the sediment cores increased slowly up the core while TP and total inorganic carbon have been fairly constant.  相似文献   

15.
Phosphorus fractions and phosphate adsorption characteristics of 16 sediments from a shallow freshwater lake (Nansi Lake, China) and its inflow estuaries were investigated. In the present study, the sediment phosphorus is fractionated into exchangeable P (exch-P), Al-P, Fe-P, Ca-P, organic P (OP), inorganic P (IP) and total P (TP). The results show that the total phosphorus (TP) content in the sediments ranges from 571.67 to 1,113.55 mg kg(-1), and calcium bound phosphorus (Ca-P) is the main fraction of IP. The biologically available phosphorus (BAP) ranges from 32.02 to 229.67 mg kg(-1) in the Nansi Lake sediments. Phosphate adsorption on the sediments mainly occurs within 10 h and is completed within 48 h. The content of native adsorbed phosphorus (omega(NAP)) varies greatly from 6.05 to 194.37 mg kg(-1), showing a significant correlation with the total maximal amount of phosphorus adsorbed (TQ(max)). Adsorption efficiency (m) ranges from 574.79 to 3,220.68 l kg(-1) and zero equilibrium phosphorus concentration (C(EPC)) ranges from 0.010 to 0.157 mg l(-1). After the South-to-North Water Diversion Project, the inherent phosphorus present in sediments will be a major threat to the diverted water quality and be a predominant factor determining the trophic status of the lake even if the external load is reduced.  相似文献   

16.
Modelling the Effects of Inflow Parameters on Lake Water Quality   总被引:1,自引:0,他引:1  
A one-dimensional lake water quality model which includes water temperature, phytoplankton, phosphorus as phosphate, nitrogen as ammonia, nitrogen as nitrate and dissolved oxygen concentrations, previously calibrated for Lake Calhoun (USA) is applied to Uokiri Lake (Japan) for the year 1994. The model simulated phytoplankton and nutrient concentrations in the lake from July to November. Most of the water quality parameters are found to be the same as for Lake Calhoun. To predict probable lake water quality deterioration from algal blooming due to increased nutrient influx from river inflow, the model was run for several inflow water conditions. Effects of inflow nutrient concentration, inflow volume, inflow water temperatures are presented separately. The effect of each factor is considered in isolation although in reality more than one factor can change simultaneously. From the results it is clear that inflow nutrient concentration, inflow volume and inflow water temperature show very regular and reasonable impacts on lake water quality.  相似文献   

17.
杭州西湖水体生态环境参数的相互关系   总被引:6,自引:1,他引:6  
采用 2 0 0 0年的西湖常规监测数据 ,分析了西湖水体中生态环境特征参数的季节变化和相互关系。分析表明 ,西湖水体各生态环境参数 ,除总氮外 ,均呈现出明显的季节性变化 ,总磷、溶性正磷酸盐、叶绿素 a和藻类季节变化一致 ,在夏季形成高峰 ,冬季最低 ;三无机氮高峰值出现在冬季 ,夏季含量为全年最低。 2 0 0 0年西湖水体总氮年均值为 2 .0 5 m g/L ,总磷年均值为 0 .12 6mg/L ,N/P大于 16,西湖属于磷控制型富营养湖泊。通过相关分析 ,从另一方面说明磷是西湖水体的限制因子 ;硝酸盐对西湖沉积物和湖水之间的磷酸盐平衡有一定的影响 ;硝酸盐对西湖水体中浮游植物生长繁殖可能有抑制作用  相似文献   

18.
Following restoration changes in Antoninek Reservoir physico-chemical and biological processes in the water column and bottom sediments were measured to outline mechanisms of changes in nitrogen, phosphorus and organic matter concentrations during water flow through this reservoir. Intensive mineralisation of organic matter in the shallow sediments stimulated primary production and influenced increasing ammonia and nitrite nitrogen concentrations. Two main factors affected concentrations of phosphorus: (1) its presence in the external loads of river waters entering the reservoir, more important in the colder seasons as the water discharge was higher and (2) from the internal loads coming from bottom sediments. The quality of the river water during its flow through this reservoir improved for most parameters and seasons. However, concentrations of nutrients were still high in waters flowing out from the reservoir and in some months they were higher in the outflow than in waters entering the reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号