首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
采用微波消解和ASD消解2种消解方式对不同土壤样品进行消解,ICP-MS测定其中重金属含量。微波和ASD2种消解方式均能够较好地提取土壤中的Cr、Co、Ni、Mn和V元素,实验结果的相对误差和相对标准偏差均≤10%,符合实验分析的要求。微波消解精密度优于ASD,可作为优先选择的前处理方法。  相似文献   

2.
土壤重金属含量测定不同消解方法比较研究   总被引:19,自引:1,他引:18  
消解是影响土壤重金属测定结果准确性的关键步骤.比较电热板消解、微波消解和全自动石墨消解3种消解方法的操作流程,同时对不同类型土壤样品中Cu、Zn、Pb、Cd、Cr、Ni 6种元素含量进行对比测定,结果表明,电热板消解设备简单,但步骤繁锁,操作不当易造成组分损失;微波消解速度快,测定结果精密性和准确性较好,但仍需人工赶酸程序且罐位少,不适合大批量样品分析;全自动石墨消解不仅测定结果精密性和准确性较好,而且自动化程度高,可实现无人值守,大大节省人力,尤其适合大批量样品的分析.  相似文献   

3.
探讨全自动消解-石墨炉原子吸收法测定土壤中镉的方法。选用硝酸-氢氟酸-高氯酸作为消解体系,采用全自动消解仪对土壤样品进行消解,通过研究干燥、灰化和原子化温度对吸光度的影响,优化出最佳的石墨炉升温程序,依据国标方法 (GB/T17141-1997)石墨炉原子吸收分光光度法测定土壤样品中的镉元素含量。该方法检测土壤国家标准物质GSS-8、 GSS-22、GSS-24等,所得结果与标准值相吻合。方法简便、快速、重现性好、灵敏度高,适用于批量土壤样品中Cd的测定。  相似文献   

4.
土壤重金属监测过程及其质量控制   总被引:12,自引:8,他引:4  
重点探讨了土壤中典型重金属含量监测过程中样品制备、含水率、预处理等因素对分析结果的影响。实验结果表明,充分风干土壤的含水率在2%~3%左右,200目土壤颗粒度可满足分析精度的要求。硝酸-氢氟酸-高氯酸的多元混酸消解体系可实现对土壤重金属的充分溶解,对标准土壤样品中各元素的回收率可达84%~98%。批次内平行样品以及批次间质控样品各元素的相对标准偏差大都小于10%,符合《土壤环境监测技术规范》的要求,表明该研究建立的系统土壤重金属检测方法结果准确可靠。  相似文献   

5.
建立了微波消解-火焰原子吸收光谱法测定土壤中锶的方法.用微波消解土壤、电热板加热赶酸的方法对土壤样品进行前处理,优化了微波消解条件.检出限为3.0 mg/kg,加标回收率为84.7% ~ 107%,相对标准偏差均小于5%.方法快速、简便、准确度高、线性范围宽.  相似文献   

6.
高压蒸汽消解法测定土壤、底质中的有机质   总被引:1,自引:1,他引:0  
用“自控式高压蒸汽消解器”作加热器,将测定土壤、底质中有机质由敞口油浴法转变为密封高压蒸汽消解法,用实际土样全面优化了温度、硫酸浓度、时间等消解条件,建立了高压蒸汽消解法测定土壤、底质中有机质的方法,并用于不同地方、不同类型土壤和底质中有机质测定,同时用油浴法作对照,相对误差在-37~53%之间。该方法精密度好,无实验室二次污染,批处理样品数量多,可作为测定土壤、底质中有机质的常规方法。  相似文献   

7.
采用4种微波消解体系对聚四氟乙烯(PTFE)材质滤膜采集的PM2.5样品进行消解,利用电感耦合等离子体质谱(ICP-MS)测定样品中Cr、Mn、Cu、As、Cd 5种重金属元素含量,并计算其空白加标和样品加标回收率,建立了测定PTFE材质滤膜采集的PM2.5样品中重金属元素的最优微波消解体系。结果表明,4种消解体系下,空白加标回收率和样品加标回收率均处于合理范围,分别为95.3%~116.3%和93.3%~118.5%。其中,HNO3放置过夜+H2O2消解体系具有空白值低、测定稳定性强、操作简便、绿色环保、对人体健康危害小等优点,能够满足大批量PM2.5样品中重金属总量的快速、高效、准确分析的要求。  相似文献   

8.
土壤重金属元素检测国际实验室比对研究   总被引:1,自引:0,他引:1  
IERM和CNAS合作组织开展了亚太实验室合作组织(APLAC)能力验证计划"APLAC T066土壤重金属元素检测",其目的是评价参加实验室定量分析土壤重金属元素总量的能力。研究所用的能力验证样品为IERM研制的土壤标准样品。结果表明,参加实验室检测土壤砷、铜、汞、镍、铅和锌的结果满意率分别为85.7%、95.8%、77.1%、83.3%、93.5%和91.7%。样品消解过程加入氢氟酸时,铅和锌的检测结果与标准值更加接近,说明检测土壤重金属元素总量时氢氟酸的加入非常关键。文章还对比对实验室结果评价的统计方法进行了探讨。  相似文献   

9.
火焰原子吸收分光光度法测量土壤中铜、锌的含量   总被引:2,自引:0,他引:2  
土壤样品经预处理后,采用微波溶样消解法提取土壤中的有效态铜、锌元素,通过火焰原子吸收分光光度法,在最佳测定条下利用标准曲线法,完成对土壤中的有效态铜、锌元素。测定方法操作简便线性范围太,结果精密度高、准确度好,可以满足土壤样品中有效铜、锌元素的测定需要。  相似文献   

10.
测定废水重金属样品的高压蒸汽消解方法   总被引:1,自引:0,他引:1  
本文采用正交实验方法,用自己研制的“自控式高压蒸汽消解器”,详细研究了测定废水重金属,样品的最佳消解条件,并用于实际废水样的消解和重金属的测定,准确度和精密度均优于传统的敞口消解法,并具有试剂用量少、时间短、不受污染、操作简单,批处理样品量大等优点,可作为测定废水中重金属,样品的常规消解方法。  相似文献   

11.
Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.  相似文献   

12.
In this study, soil samples were collected from Edirne, Turkey in both summer and winter seasons and subjected to the modified Community Bureau of Reference (BCR) sequential extraction procedure in order to investigate the chemical partitioning of metals in soils and to predict heavy metals uptake by wheat grains which grown at the same soils. The samples were subjected to a three stage extraction procedure proposed by the BCR. The three phases that were separated out in the following order: (1) carbonate, exchangeable, (2) Fe?CMn oxides, and (3) organic matter. Metal concentrations of soil fractions and grain samples were determined by inductively coupled plasma atomic emission spectroscopy. The wheat samples were prepared to analysis using microwave acid digestion procedure. The pseudo-total concentrations of metals were determined after aqua regia digestion. The analytical accuracy of the method was evaluated by using the Standard Reference Materials (BCR 142R Light Sandy Soil, NIST 2711 Montana Soil, and NIST 2704 Buffalo River Sediment). The sum of the metal contents obtained from the modified BCR sequential extraction procedure and pseudo-total metal contents for soil samples were used to calculate recovery values. In order to evaluate the bioavailability of metals, the relationships between the wheat-metal and soil-extractable metal concentrations were compared.  相似文献   

13.
Combining genotoxicity/mutagenicity tests and physico-chemical methodologies can be useful for determining the potential genotoxic contaminants in soil samples. The aim of our study was to evaluate the genotoxicity of soil by applying an integrated physico-chemical-biological approach. Soil samples were collected at six sampling points in a Slovenian industrial and agricultural region where contamination by heavy metals and sulphur dioxide (SO2) are primarily caused by a nearby power plant. The in vitro alkaline version of the comet assay on water soil leachates was performed with Caco-2 and HepG2 cells. A parallel genotoxicity evaluation of the samples was performed by Ames test using Salmonella typhimurium and the Tradescantia micronucleus test. Pedological analyses, heavy metal content determination, and different physico-chemical analyses, were also performed utilizing standard methodology. Water leachates of soil samples were prepared according to standard methods. Since only a battery of biotests with prokaryotic and eukaryotic organisms or cells can accurately estimate the effects of (geno)toxicants in soil samples and water soil leachates, a combination of three bioassays, with cells or organisms belonging to different trophic levels, was used. Genotoxicity of all six water soil leachates was proven by the comet assay on both human cell lines, however no positive results were detected by bacterial assay, Ames test. The Tradescantia micronucleus assay showed increase in micronuclei formation for three samples. According to these results we can assume that the comet assay was the most sensitive assay, followed by the micronucleus test. The Ames test does not appear to be sensitive enough for water soil leachates genotoxicity evaluations where heavy metal contamination is anticipated.  相似文献   

14.
XRF法检测土壤重金属的影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
对X射线荧光(XRF)法检测土壤重金属的影响因素进行探讨,研究证实土壤样品厚度、粒径和含水率均会对荧光强度产生影响,且影响程度与X射线的能量有关,对低能量X射线的影响显著大于对高能量X射线的影响。为保障分析的质量,在应用XRF法进行土壤重金属检测时,土壤样品应完全干燥,混合均匀,保持土壤粒径均匀一致,土壤样品厚度统一为10 mm。  相似文献   

15.
The fate of trace elements (like Ca, Fe, Al, Pb, K, and Cu) in various pulses (mash, mung, lentils and red kidney beans) of Pakistan has been studied. Samples were collected from two districts (Mansehra and Rawalpindi) and analyzed by wet acid digestion method using atomic absorption spectrophotometry. Experimental results show that the intensity of heavy metal accumulation in plants depends upon the type of the soil, the species of plants, the physicochemical properties of heavy metals, and their content in the soil. The obtained values were compared with the World Health Organization (WHO) standards for food quality. The grains from District Mansehra contained greater amount of trace metals as compared to those collected from District Rawalpindi. However, those values did not exceed the upper limits described by the WHO in nearly all the cases. Based on these findings, the consumption of pulses in larger amounts may easily be recommended.  相似文献   

16.
Thane district is one of the most industrialized districts in Maharashtra. The heavy industrialization and the increasing urbanization are responsible for the rapidly increasing stress on the water and soil environment of the area. Therefore, an attempt has been made through comprehensive study on the groundwater contamination and soil contamination due to heavy metals in Thane region of Maharashtra. The area undertaken for the study was Thane and its suburbans Kalwa, Divajunction, Dombivali, Kalyan, and Ulhasnagar. Industrialization and urbanization lead to generation of large volumes of wastewater from domestic, commercial, industrial, and other sources, which discharged in to natural water bodies like river and creek in this region. Groundwater samples and soil samples were collected from residential, commercial, agriculture, and industrial areas. Groundwater samples were analyzed for various water quality parameters. The analytical data shows very high concentration of total dissolved solids, total hardness, total alkalinity, chemical oxygen demand, chloride etc. Groundwater and soil samples were analyzed for ten heavy metals by inductively coupled plasma (ICPE-9000) atomic emission spectroscopy. The analytical data reveal that, very high concentration level of arsenic, cadmium, mercury, and nickel throughout the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the groundwater and soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source for heavy metals. A comparison of the results of groundwater with WHO guidelines show that most of the groundwater sampling station are heavily contaminated with organic matter and heavy metals. Groundwater samples are heavily contaminated by arsenic, cadmium, mercury, and nickel. Similarly, the results of heavy metals in soil compared with Swedish soil guideline values for polluted soil show that soil samples collected from residential, commercial and industrial areas are heavily contaminated by arsenic, cadmium, mercury, and nickel.  相似文献   

17.
海洋沉积物中多种重金属的X射线荧光分析法   总被引:1,自引:0,他引:1  
建立了海洋沉积物中包括砷、铜、铅、锌、镍和总铬在内的多种重金属X射线荧光分析法,测量不需要任何消解前处理过程,可在约1h内测量1个样品中的50余种元素,用该方法分析了8个海洋沉积物标准样品,还与原子荧光光谱法或原子吸收分光光度法比对分析了2个实际样品,结果表明,该方法可信度较高,且具有快速、简便、高效等特点,是一种非破坏性分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号