首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 110 毫秒
1.
根据南通市2016和2017年冬季大气多参数站自动监测PM2.5数据和在线离子色谱分析仪Marga监测的PM2.5中水溶性离子数据,分析了南通市冬季PM2.5中水溶性离子污染特征。结果表明,南通市2016和2017年冬季,ρ(PM2.5)分别为58和54μg/m 3,均高出其年均值(14μg/m^3);ρ(水溶性离子)总占ρ(PM2.5)百分比分别为74.5%和74.3%;二次离子ρ(NO3^-、SO4^2-和NH4^+)占ρ(PM2.5)百分比分别为66.8%和66.6%;各水溶性离子占比大小依次为:NO3^-、SO4^2-、NH4^+、Cl^-、K^+、Na^+、Ca^2+、Mg^2+。对ρ(NO3^-)/ρ(SO 4^2-)分析表明,移动源已经成为南通市冬季的主要污染源,且呈逐年增强趋势。对氯氧化率和硫氧化率的分析表明,南通市冬季存在较明显的二次污染,SO2的转化程度大于NO2。除Na^+和Mg^2+外,其他离子与PM2.5均呈显著相关性,NO3^-、SO4^2-与NH4^+之间的相关系数最高,Cl^-与除Na^+外的所有阳离子均呈显著相关性。  相似文献   

2.
为探究典型燃煤工业城市邯郸市的大气细颗粒物(PM2.5)污染水平及水溶性无机离子特征,于2016年1—12月采集了当地大气PM2.5样品,然后利用离子色谱法测得水溶性无机离子的组分,分析了不同季节水溶性无机离子随PM2.5的浓度变化特征。通过对PM2.5中的阴离子、阳离子进行分析发现,SO4^2-、NO3^-和NH4^+在春夏秋冬四季均为PM2.5中的主要离子成分,SO4^2-、NO3^-和NH4^+的浓度之和在春夏秋冬四季占各季节总的水溶性无机离子浓度的百分比分别为84.6%、77.4%、89.9%、62.5%。其中,在春季和冬季含量最高的3种离子分别是NO3^-、SO4^2-和NH4^+,夏季含量最高的3种离子分别是SO4^2-、NH4^+和NO3^-,而秋季含量最高的3种离子分别是NH4^+、SO4^2-和NO3^-。相关性分析发现,2016年春季、夏季和秋季PM2.5为酸性,冬季为碱性。SO4^2-、NO3^-、NH4^+浓度分析表明,冬季PM2.5中的一次建筑扬尘排放较多。通过主成分分析法得出,PM2.5中水溶性无机离子主要来源于二次转化和生物质燃烧。  相似文献   

3.
基于城市超级站对2018年12月—2019年2月南京市在线水溶性离子污染特征进行研究。结果表明:监测期间水溶性无机离子(WSIs)质量浓度均值为45.7μg/m3,占PM2.5的67.8%,各离子排序为NO3-> SO42->NH4+>Cl->K+>Ca2+>Na+>Mg2+。二次离子(SNA)是PM2.5主要组分,大气气溶胶呈中性。各离子日变化存在差异,SNA变化趋势和WSIs基本一致。南京市冬季存在明显SO2和NO2向SO42-和NO3-二次转化;NO3-/SO42-均值为1.96,移动源增量大于固定源。通过相关性和三相聚类分析可知,SNA主要结合方式为(NH4)2SO4和NH4NO3。主成分分析表明,南京市冬季PM2.5中水溶性离子主要来源是二次转化,燃煤、生物质燃烧和土壤建筑扬尘也有贡献。  相似文献   

4.
对昆山市区域7个点位夏秋季的5中水溶性无机阴离子(SO2-4、NO-3、NO-2、Cl-、F-)的污染特征进行了调查,结果表明,昆山市夏季大气PM2.5中5种离子平均值排序为:ρ(SO2-4)ρ(Cl-)ρ(NO-3)ρ(F-)ρ(NO-2);秋季平均值排序为:ρ(SO2-4)ρ(NO-3)ρ(Cl-)ρ(F-)ρ(NO-2)。SO2-4、NO-3和Cl-3者的总量在PM2.5中占比20%。除F-以外各区域离子的平均值秋季比夏季要高。ρ(NO-3)/ρ(SO2-4)表明,固定污染源在昆山市大气颗粒物污染中仍然占很大比重,但大部分测点的比值接近1,说明移动源也是昆山大气颗粒物的重要污染源。  相似文献   

5.
2013年11月—2014年3月采暖期在沈阳市沈河区设置采样点采集环境空气中的PM2.5。利用离子色谱法测定PM2.5中水溶性无机离子,分析PM2.5中水溶性无机离子的组成和污染特征等。结果表明,沈阳市冬季采暖期PM2.5平均质量浓度为106μg/m3,PM2.5中总水溶性离子占PM2.5的比例为41.7%,含量较高的二次离子依次为SO2-4、NO-3、NH+4,三者均有较好的相关性,SO2-4以(NH4)2SO4形式存在,采暖期PM2.5偏酸性。  相似文献   

6.
石家庄市大气颗粒物中水溶性无机离子污染特征研究   总被引:3,自引:0,他引:3  
用超声萃取-离子色谱法分析了石家庄市大气颗粒物中8种水溶性无机离子。结果表明,NO3-、SO2-4、NH4+及 Ca2+为主要组分;各个离子的质量浓度均有季节及空间变化差异;不同粒径颗粒物中 SO2-4和 NO3-相关性均很好,NH4+与 SO2-4、NO3-在细颗粒物中具有良好的相关性,Ca2+在粗粒子中与 NO3-和 SO2-4的相关性也较好。SO2-4/NO3-质量比季节变化表明,春、夏季固定源与流动源对大气颗粒物贡献相当,秋季流动源贡献较大,冬季固定源贡献较大。PM2.5中SO2与SO2-4、NO2与 NO3-转化率表明,SO2-4、NO3-主要是由二次转化而来。  相似文献   

7.
为研究大气中细颗粒物(PM_(2.5))在中低浓度水平下的污染特征及来源,于2018—2020年在上海市浦东新区采用在线气体组分及气溶胶监测系统对大气ρ(PM_(2.5))及其水溶性离子的质量浓度进行了在线连续观测。结果表明,2018—2020年ρ(PM_(2.5))变化总体均呈现冬季较高,春、秋季其次,夏季较低的特征。PM_(2.5)中水溶性离子组分按质量浓度大小排序为:ρ(NO_(3)^(-))>ρ(SO_(4)^(2-))>ρ(NH_(4)^(+))>ρ(Cl^(-))>ρ(K^(+))>ρ(Na^(+)),SO_(4)^(2-)、NO_(3)^(-)和NH_(4)^(+)(SNA)占总离子浓度的94%以上,占PM_(2.5)的52%以上,是影响PM_(2.5)的重要组分。Cl^(-)约占3%,Na^(+)和K^(+)占比均<1%。NO_(3)^(-)离子浓度随季节变化程度最大。春季颗粒物明显表现为弱酸性,冬季颗粒物则呈现出向弱碱性发展的态势,全年总体基本呈中性。通过离子平衡计算,SNA在大气中主要倾向于以(NH_(4))_(2)SO_(4)和NH_(4)NO_(3)的形式存在。SO_(4)^(2-)、NO_(3)^(-)和NH_(4)^(+)相关性较高,Cl^(-)和K^(+)相关性较高,具有同源性。硫氧化率(SOR)与氮氧化率(NOR)均>0.1,SO_(2)和NO_(2)的二次转化程度较高。机动车尾气排放及其引起的二次粒子和区域输送已经成为观测期间内PM_(2.5)的主要来源。  相似文献   

8.
重庆市大气TSP中水溶性无机离子的化学特征   总被引:7,自引:0,他引:7  
于2001至2002年在重庆市7个采样点采集了TSP,进行了水溶性无机离子分析。结果发现,SO42-离子浓度最高,其浓度范围为6.32~20.96μg/m3;Ca2 次之,其浓度范围0.78~7.47μg/m3;SO42-、NO3-和NH4 三种离子占TSP质量的8.05%~20.96%。Ca2 、K 与SO42-和NO3-都有很好的相关性,[NO3-]/[SO42-]比值较低(均值为0.4),说明重庆市区普遍使用含硫燃煤。SO42-浓度冬季最高,主要与冬季燃煤的消耗增大有关,NO3-季节明显,与NO3-的形成环境温度密切相关。水溶性无机离子质量浓度有较明显的区域差异,中心城区采样点离子质量浓度高于距离中心城区较远的采样点。  相似文献   

9.
广州市大气细粒子的化学组成与来源   总被引:15,自引:3,他引:12  
对广州市四个不同功能区(石井、荔湾、天河和海珠)的夏季大气PM2.5进行了为期一个月的监测,并测试分析了其化学组成(有机碳/元素碳、水溶性离子和元素)。结果表明,广州市夏季PM2.5的平均浓度为97.54μg/m3,其化学组分有机物、SO42-和EC对PM2.5质量浓度贡献最大,分别占PM2.5质量浓度的42%~52%、25%~47%和10%~17%。化学质量平衡模型研究表明,机动车排放和煤燃烧是对广州市大气PM2.5影响最大的污染源,其贡献率分别为54%~75%和32%~52%。  相似文献   

10.
采用2015—2017年秋、冬季江苏省环境空气质量监测数据,从空气质量优良(达标)率、首要污染物、主要污染物浓度分析空气质量现状及特点。结果表明,江苏省秋、冬季空气质量优良(达标)率在60%左右,其中沿海地区空气质量达标率最高(71.1%),西北地区达标率最差(52.2%)。污染日的首要污染物主要为PM 2.5,占比高达91.5%。ρ(PM2.5)/ρ(PM 10)存在地区差异,江苏西北地区扬尘源贡献较大,江苏南部地区的二次颗粒物贡献更明显。ρ(NO2)/ρ(SO2)逐年持续升高,表明大气污染类型从燃煤性污染转变为复合型污染。  相似文献   

11.
选取金昌市2019年3月—2020年2月PM2.5和PM10逐小时观测数据,分析该市颗粒物污染水平的季节差异,并利用HYSPLIT后向轨迹模式和GDAS气象数据,分析不同气流轨迹对金昌市颗粒物浓度的影响及不同季节颗粒物的潜在污染来源。结果表明,2019年金昌市冬季PM2.5污染最严重,春季PM10污染严重;春、秋季PM10污染程度最高的气流轨迹主要来自西北的长距离输送,而夏、秋、冬季来自周边的短距离气流PM2.5污染程度较高;春季PM2.5贡献源区主要位于新疆东部和俄罗斯南部,秋季主要位于甘肃东南部和阿拉善盟,夏、冬季主要位于青海中西部、西藏北部和新疆西部。  相似文献   

12.
大气可吸入颗粒物(PM10)中矿物组分的X射线衍射研究   总被引:6,自引:1,他引:5  
利用X射线衍射技术对北京2002春季和夏季的可吸入颗粒物进行了研究.结果表明,北京春季和夏季可吸入颗粒物的矿物组成明显不同,春季可吸入颗粒物中的矿物以硅铝酸盐为主,同时存在碳酸盐、硫酸盐、硫化物、铁的氧化物、粘土矿物以及难以鉴定的矿物;在夏季的样品中,矿物的种类有所减少,却有新的物种出现,如氯化氨、硫酸氨等.XRD定量分析显示,在沙尘天气时,可吸入颗粒物中石英和粘土矿物以及非晶质分别占到24.1%、28.5%和2 0%,斜长石和方解石分别占到10.4%和8.1%,其他矿物总共不到10%.矿物组分的确定对可吸入颗粒物来源的识别有一定的指导作用.  相似文献   

13.
Atmospheric visibility impairment has gained increasing concern as it is associated with the existence of a number of aerosols as well as common air pollutants and produces unfavorable conditions for observation, dispersion, and transportation. This study analyzed the atmospheric visibility data measured in urban and suburban Hong Kong (two selected stations) with respect to time-matched mass concentrations of common air pollutants including nitrogen dioxide (NO(2)), nitrogen monoxide (NO), respirable suspended particulates (PM(10)), sulfur dioxide (SO(2)), carbon monoxide (CO), and meteorological parameters including air temperature, relative humidity, and wind speed. No significant difference in atmospheric visibility was reported between the two measurement locations (p > or = 0.6, t test); and good atmospheric visibility was observed more frequently in summer and autumn than in winter and spring (p < 0.01, t test). It was also found that atmospheric visibility increased with temperature but decreased with the concentrations of SO(2), CO, PM(10), NO, and NO(2). The results showed that atmospheric visibility was season dependent and would have significant correlations with temperature, the mass concentrations of PM(10) and NO(2), and the air pollution index API (correlation coefficients mid R: R mid R: > or = 0.7, p < or = 0.0001, t test). Mathematical expressions catering to the seasonal variations of atmospheric visibility were thus proposed. By comparison, the proposed visibility prediction models were more accurate than some existing regional models. In addition to improving visibility prediction accuracy, this study would be useful for understanding the context of low atmospheric visibility, exploring possible remedial measures, and evaluating the impact of air pollution and atmospheric visibility impairment in this region.  相似文献   

14.
2011年南京市春季大气颗粒物污染特征分析   总被引:2,自引:0,他引:2  
2011年江苏省环境监测中心对南京市鼓楼、建邺、栖霞3区8个采样点采集了TSP和PM10样品,进行颗粒物质量浓度、水溶性离子、无机元素以及碳成分分析。结果表明该市春季大气颗粒物污染以PM10为主,不同区域颗粒物污染特点不一;水溶性离子以Ca2+、NO3-及SO2-4居多;无机元素以Ca、Fe、Al为主,Pb与Zn浓度较Ni与V高;市内EC浓度较高,可能与裸露堆煤场有关。有关研究结果提交南京市政府部门,供决策时参考。  相似文献   

15.
选取南京市2017年PM2.5逐时观测数据,分析其颗粒物污染特征,并利用聚类分析、潜在源贡献因子法和GDAS气象数据,分析不同高度、季节下南京市主要气流输送路径及PM2.5污染的主要潜在源区。结果表明:南京市PM2.5污染冬季最严重,夏季最轻,逐时PM2.5浓度变化范围夏季小于冬季;夏季气流轨迹主要来自东南方向,秋冬春等季节以偏西和西北路径为主,且随着高度的增加,气流输送速度逐渐加快;冬季对南京市PM2.5污染的贡献最为显著,低层PM2.5污染贡献源区主要集中在近地区域,且贡献率较高,随着高度的增加,贡献源区由研究区域向四周辐散,贡献范围广,贡献率降低。  相似文献   

16.
主要气象因素对可吸入颗粒物浓度影响规律探讨   总被引:6,自引:1,他引:5  
简要介绍了上海、南京、苏州和南通市区API污染指数逐月同步走向的一致性,得出环境空气质量保护目标确定条件下,影响大气污染物浓度高低的主要因素是大中尺度天气系统的气象因素以及春、夏、秋、冬和典型冬季寒潮前后,南通市区可吸入颗粒物与气象因素之间的相关变化关系.说明在政府加大力度控制大气污染物排放量并取得阶段性成果时,另一个影响可吸入颗粒物浓度高低变化的重要因素是气象因素.  相似文献   

17.
平顶山市大气PM10、PM2.5 污染调查   总被引:5,自引:4,他引:1       下载免费PDF全文
于2003年12月-2004年11月对平顶山市城区大气PM10、PM2.5污染进行了调查.结果表明,2004年大气PM10、PM2.5质量浓度分别为0.031 mg/m3~0.862 mg/m3、0.019 mg/m3~0.438 mg/m3;年均值分别为0.174 mg/m3、0.114 mg/m3,超标0.74倍、6.60倍.PM10、PM2.5污染的季节变化趋势是以冬季、春季高,秋季次之,夏季最低,细颗粒(PM2.5)约占PM10 65%;As、Pb、Cd、S、Zn、Cu、Mn、Ca等元素是颗粒物中主要污染元素,易在PM2.5中富集.平顶山市大气颗粒物污染的主要来源有煤炭燃烧、汽车尾气、城市基础建设和有色金属冶炼行业.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号