首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Water quality of rivers is strongly influenced by landscape characteristics of their watershed, including land use /cover types, and their spatial configuration. This research evaluates the effects of land cover changes on the water quality of the Zayandehroud River, which is the most important river in the center of Iran. The main goal of this study was to quantify the change in rangelands, forests, and bare lands in the Zayandehroud river basin, which suffered intense human interference, in a period of 11 years (1997–2008), and to evaluate how landscape patterns (including the number of patches, edge density, percentage of rangelands, forests, and bare lands) influence on the 14 water quality indices (including BOD5, EC, NO3, P, and TDS) measured in 10 stations along the river. Results showed that from 1997 to 2008, bare lands increased from 5.8 to 20 %, while rangelands decreased from 70 to 55 % in the whole basin. The results indicated that water quality was significantly correlated with both the proportions and configuration of rangeland and bare land areas. The total edge (TE) of rangeland area had positive effects on water quality, especially on BOD5 and EC. Percentage of landscape (PLAND) and largest patch index (LPI) metrics of rangeland had positive effect on decreasing nutrient (NO3, PO4). The results showed that water quality was more likely degraded when there was high edge density (ED) of bare lands. Results of this study also revealed that degradation of rangeland lead to the degradation of water quality. Finding of this study highlights the importance of rangeland conservation in water quality management at landscape scale.  相似文献   

2.
Sources of fecal coliform pollution in a small South Carolina (USA) watershed were identified using inexpensive methods and commonly available equipment. Samples from the upper reaches of the watershed were analyzed with 3M? Petrifilm? count plates. We were able to narrow down the study’s focus to one particular tributary, Sand River, that was the major contributor of the coliform pollution (both fecal and total) to a downstream reservoir that is heavily used for recreation purposes. Concentrations of total coliforms ranged from 2,400 to 120,333 cfu/100 mL, with sharp increases in coliform counts observed in samples taken after rain events. Positive correlations between turbidity and fecal coliform counts suggested a relationship between fecal pollution and stormwater runoff. Antibiotic resistance analysis (ARA) compared antibiotic resistance profiles of fecal coliform isolates from the stream to those of a watershed-specific fecal source library (equine, waterfowl, canines, and untreated sewage). Known fecal source isolates and unknown isolates from the stream were exposed to six antibiotics at three concentrations each. Discriminant analysis grouped known isolates with an overall average rate of correct classification (ARCC) of 84.3 %. A total of 401 isolates from the first stream location were classified as equine (45.9 %), sewage (39.4 %), waterfowl (6.2 %), and feline (8.5 %). A similar pattern was observed at the second sampling location, with 42.6 % equine, 45.2 % sewage, 2.8 % waterfowl, 0.6 % canine, and 8.8 % feline. While there were slight weather-dependent differences, the vast majority of the coliform pollution in this stream appeared to be from two sources, equine and sewage. This information will contribute to better land use decisions and further justify implementation of low-impact development practices within this urban watershed.  相似文献   

3.
Although many studies focus on mercury (Hg) and methylmercury (MeHg) dynamics in streams, challenges remain in identifying the relative importance of land cover and seasonality at regulating Hg and MeHg dynamics at the watershed scale. Developing robust proxies for Hg and/or MeHg determination also remains a challenge. Our study used Hg, MeHg, and dissolved organic carbon (DOC) concentration measurements and various DOC fluorescence indices to characterize Hg and DOC dynamics in a forested watershed of the US Northeast. Principal component analysis indicated that land cover/landscape position (i.e., headwater vs. wetland-influenced area vs. lake-influenced area) explained 44 % of the variance in Hg, MeHg, DOC concentrations, and DOC quality during the snow-free season, while seasonality (i.e., air temperature and discharge) explained only 21 % of the variance in the results. Furthermore, finding a good proxy for Hg that is valid across a range of landscape positions remains a challenge; however, regression analysis indicated that the fluorescence peak Humic C (excitation?=?350 nm; emission?=?max (420–480)), which corresponds to the presence of melanoidins in water, explained 21 % of the variability in MeHg concentrations across both space and time (p?=?0.001), and thus appears to be a possible proxy for MeHg determination in our study watershed. From a management perspective, land cover modifications (lake, reservoir, and wetland) are likely to play more important roles at regulating Hg, MeHg, and DOC exports at the watershed scale than long-term changes in the climate of this region.  相似文献   

4.
Fecal pollution may adversely impact water quality in coastal ecosystems. The goal of this study was to determine whether cattle were a source of fecal pollution in a South Carolina watershed. Surface water samples were collected in June 2002 and February through March 2003 in closed shellfish harvesting waters of Toogoodoo Creek in Charleston County, SC. Fecal coliform concentrations in 70 % of the water samples taken for this study exceeded shellfish harvesting water standards. Ribotyping was performed in order to identify animal sources contributing to elevated fecal coliform levels. Escherichia coli isolates (n?=?253) from surface water samples were ribotyped and compared to a ribotype library developed from known sources of fecal material. Ribotypes from water samples that matched library ribotypes with 90 % maximum similarity or better were assigned to that source. Less than half of the unknown isolates (38 %) matched with library isolates. About half (53 %) of the matched ribotypes were assigned to cattle isolates and 43 % to raccoon. Ribotyping almost exclusively identified animal sources. While these results indicate that runoff from cattle farms was a likely source of fecal pollution in the watershed, wildlife also contributed. Given the small size of the library, ribotyping was moderately useful for determining the impact of adjacent cattle farms on Toogoodoo Creek. Increasing the number and diversity of the wildlife sources from the area would likely increase the usefulness of the method.  相似文献   

5.
Identifying areas that are susceptible to soil erosion is crucial for water resource planning and management efforts. Furthermore, modeling has proven helpful in recognizing and monitoring high-risk areas at the watershed scale. The Water Erosion Prediction Project (WEPP) geospatial interface (GeoWEPP) software integrates GIS with the WEPP to analyze the spatial variation in soil loss, and it has been used as a modeling tool to determine the areas that are most prone to soil erosion and to evaluate best management practices for the Kasilian watershed in Iran. As much as 62.4 % of the agronomic land in the Kasilian watershed is affected by a high magnitude of erosion (>5 t/ha). On the basis of this study, by using soybeans, high fertilization levels, and the drill-no-tillage system, reductions of erosion by almost 32.68–34.02 % are perceivable in three critical subwatersheds that are located in the cultivated lands. Also, it is projected that reductions in the production of sediment in the range of about 36.7–47.1 % are achievable by structural management within two critical, upland subwatersheds. So, by utilizing the best management strategies, sediment yield can be lowered and the conservation of soil and water is feasible at the watershed scale. These results objectively indicate that GeoWEPP can be efficaciously used for evaluating effective management practices for developing watershed conservation.  相似文献   

6.
This study aimed to analyze the impact of Zayandehrood Dam on desertification using the spatio-temporal dynamics of land use/land cover (LULC) and land surface temperature (LST) in an arid environment in central Iran from 1987 to 2014. The LULC and LST images were calculated from Landsat TM, ETM+, and OLI data, and their accuracies were assessed against reference data using error matrix and linear regression analysis. Results showed that salty and bare lands increased up to 57,302 ha, while agricultural lands declined substantially (28,275.58 ha) in the region. The changes in LULC classes resulted in dramatic variations in LST values. The average temperature showed a 5.03 °C increase, and the minimum temperature increased by 5.66 °C. LST had an increasing trend in bare lands (8.74 °C), poor rangelands (6.8 °C), agricultural lands (9.46 °C), salty lands (9.6 °C), and residential areas (3.18 °C) in this 27-year period. Rainfall and temperature trend analysis revealed that the main cause of these extreme changes in LULC and LST was largely attributed to the drying up of Zayandehrood River due to dam construction and allocating water mainly for industrial sectors. Results indicate that in addition to LULC changes, the spatio-temporal variations of LST can be used as an effective index in desertification assessment and monitoring in arid environments.  相似文献   

7.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

8.
Recent assessments of water quality in New Zealand have indicated declining trends, particularly in the 40 % of the country’s area under pasture. The most comprehensive long-term and consistent water quality dataset is the National Rivers Water Quality Network (NRWQN). Since 1989, monthly samples have been collected at 77 NRWQN sites on 35 major river systems that, together, drain about 50 % of New Zealand’s land area. Trend analysis of the NRWQN data shows increasing nutrient concentrations, particularly nitrogen (total nitrogen and nitrate), over 21 years (1989–2009). Total nitrogen and nitrate concentrations were increasing significantly over the first 11 years (1989–2000), but for the more recent 10-year period, only nitrate concentrations continued to increase sharply. Also, the increasing phosphorus trends over the first 11 years (1989–2000) levelled off over the later 10-year period (2000–2009). Conductivity has also increased over the 21 years (1989–2009). Visual clarity has increased over the full time period which may be the positive result of soil conservation measures and riparian fencing. NRWQN data shows that concentrations of nutrients increase, and visual clarity decreases (i.e. water quality declines), with increasing proportions of pastoral land in catchments. As such, the increasing nutrient trends may reflect increasing intensification of pastoral agriculture.  相似文献   

9.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

10.
为研究2000—2015年丹江湿地国家级自然保护区及其内外生态状况变化和保护成效,基于高分1号数据生产的2m高分辨率遥感影像数据对丹江湿地国家级自然保护区2015年人类活动状况进行分析,基于30 m分辨率的4期TM遥感影像生产的土地覆被数据和基于Modis遥感影像生产的植被覆盖度数据,对淅川县、丹江湿地国家级自然保护区及其核心区的土地覆被状况、土地覆被转类指数及其土地覆被转类途径的主导程度和3个相关区域范围内的生态系统质量以及不同区域土地覆被变化的主要变化原因进行分析。结果表明,保护区核心区的格局和质量在该区域处于最优,且土地覆被变化状况也以核心区转类指数最高;丹江湿地国家级自然保护区内的主要人类活动影响为耕地,其次包括居民点、采石场、养殖场; 15年间,保护区内外土地覆被均呈现转好趋势,但是保护区内变化优于保护区外,保护区核心区优于整个保护区,且转好的主导因素均是耕地变为湿地; 15年间植被覆盖度变化较小。  相似文献   

11.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

12.
Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha-1 year-1 in the same time period. 210Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm-2 year-1 respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year-1. These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.  相似文献   

13.
The unprecedented urban growth especially in developing countries has laid immense pressure on wetlands, finally threatening their existence altogether. A long-term monitoring of wetland ecosystems is the basis of planning conservation measures for a sustainable development. Deepor Beel, a Ramsar wetland and major storm water basin of the River Brahmaputra in the northeastern region of India, needs particular attention due to its constant degradation over the past decades. A rule-based classification algorithm was developed using Landsat (2011)-derived indices, namely Normalised Difference Water Index (NDWI), Modified Normalised Difference Water Index (MNDWI), Normalised Difference Pond Index (NDPI), Normalised Difference Vegetation Index (NDVI) and field data as ancillary information. Field data, ALOS AVNIR and Google Earth images were used for accuracy assessment. A fuzzy accuracy assessment of the classified data sets showed an overall accuracy of 82 % for MAX criteria and 90 % for RIGHT criteria. The rules were used to classify major wetland cover types during low water season (January) in 1989, 2001 and 2012. The statistical analysis of the classified wetland showed heavy manifestation in aquatic vegetation and other features indicating severe eutrophication over the past 23 years. This degradation was closely related to major contributing anthropogenic factors, such as a railway line construction, growing croplands, waste disposal and illegal human settlements in the wetland catchment. In addition, the landscape development index (LDI) indicated a rapid increase in the impact of the surrounding land use on the wetland from 1989 to 2012. The techniques and results from this study may prove useful for top-down landscape analyses of this and other freshwater wetlands.  相似文献   

14.
From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.  相似文献   

15.
The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha?1 h?1 year?1. Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3 % of the cluster has soil loss below 20 t ha?1 year?1. The soil loss from crop land varied from 2.9 to 3.6 t ha?1 year?1 in low rainfall years to 31.8 to 34.7 t ha?1 year?1 in high rainfall years with a mean annual soil loss of 12.2 t ha?1 year?1. The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha?1 year?1 in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3 % of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water using farm ponds and percolation tanks. This methodology can be adopted for estimating the soil loss from similar ungauged watersheds with deficient data and for planning suitable soil and water conservation interventions for the sustainable management of the watersheds.  相似文献   

16.
Landsat time series data make it possible to continuously map and examine urban land cover changes and effects on urban environments. The objectives of this study are (1) to map and analyse an impervious surface and its changes within a census district and (2) to monitor the effects of increasing impervious surface ratios on population and environment. We used satellite images from 1987, 2003 and 2011 to map the impervious surface ratio in the census district of Szeged, Hungary through normalized spectral mixture analysis. Significant increases were detected from 1987 to 2011 in industrial areas (5.7–9.1%) and inner residential areas (2.5–4.8%), whereas decreases were observed in the city centre and housing estates due to vegetation growth. Urban heat island (UHI) values were derived from the impervious surface fraction map to analyse the impact of urban land cover changes. In 2011, the average value in the industrial area was 1.76 °C, whereas that in the inner residential area was 1.35–1.69 °C. In the city centre zones and housing estates, values ranging from 1.4 to 1.5 °C and from 1.29 to 1.5 °C, respectively, were observed. Our study reveals that long-term land cover changes can be derived at the district level from Landsat images and that their effects can be identified and analysed, providing important information for city planners and policy makers.  相似文献   

17.
Water eutrophication in subtropical regions of southern China threatens watershed health and is of major concern. However, annual phosphorus (P) loading and its dominant causes are still unclear, especially at the watershed scale. In this study, we investigated dynamic P loadings and associated factors (e.g., land use, livestock production, and runoff depth) in ten watersheds that varied in area from 9 to 5,212 ha in a hilly area of Hunan Province, China. A flowmeter was installed at the outlet of each watershed, and total P (TP) and soluble P (SP) concentrations were monitored periodically from June 2010 to October 2012. The results showed that annual P loadings (APLs) in the ten watersheds ranged from 22.8 to 247.8 kg P/km2 and that P loss primarily occurred from April to June of each year during the main rainfall season in the study area. In addition, the average eutrophication (>0.05 mg P/L) ratio for stream waters was 86.7 % during the study period, which was indicative of a potentially serious condition for the local water environments. Annual P loadings were linearly related to livestock density (LD; R?=?0.92, p?<?0.01), whereas the eutrophication ratio of stream water was significantly (p?<?0.05) correlated with LD (R?=?0.61), percentage cropland (R?=?0.71), and percentage forest cover (R?=??0.68). Thus, it is concluded that the control of livestock production has the greatest potential for reducing P loadings in watersheds in this subtropical area. This will be beneficial to the amelioration and protection of local environment.  相似文献   

18.
Streams of the Pampasic plain in Southeastern South America are ecosystems affected by both water pollution and habitat alteration mainly due to agricultural activity. Water quality is influenced by the quality of habitats and both depend on land use and watershed morphology. The objective of this study was to determine the relationship between the variables of four factors: (1) the morphology of the watershed, (2) land use in the watershed, (3) river habitat, and (4) water quality of wadeable streams in Uruguay, as well as to determine the most representative variables to quantify such factors. We studied 28 watersheds grouped into three ecoregions and four principal activities, which generated seven zones with three to five streams each. Correlations between the variables of each factor allowed reducing the total number of variables from 57 to 32 to perform principal component analyses (PCA) by factor, reducing the number of variables to 18 for a general PCA. The first component was associated with water quality and elevation. The second was associated with the stream and watershed size, the third with habitat quality, and the fourth to the use of neighboring soils and objects in the channel. Our results indicate that agricultural intensity and elevation are the main factors associated with the habitat and water quality of these lowland streams. These factors must be especially considered in the development of water quality monitoring programs.  相似文献   

19.
Non-point source water pollution is a major problem in most parts of the world, but is also very difficult to quantify and control since it is not easily separated from point sources and can theoretically originate from the whole watershed. In this article, we evaluate the relationship between land use and land cover and four water pollution parameters in a watershed in Southeast Brazil. The four parameters are nitrate, total ammonia nitrogen, total phosphorous, and dissolved oxygen. To help concentrate on non-point source pollution, only data from the wet seasons of the time period (2001–2013) were analysed, based on the fact that precipitation causes runoff which is the main cause of diffuse pollution. The parameters measured were transformed into loads, which were in turn associated with an exclusive contribution area, so that every measuring station could be considered independent. Analyses were also performed on riparian zones of different widths to verify if the effect of the land cover on the water quality of the stream decreases with the increased distance. Pearson correlation coefficients indicate that urban areas and agriculture/pasture tend to worsen water quality (source). Conversely, forest and riparian areas have a reducing effect on pollution (sink). The best results were obtained for total ammonia nitrogen and dissolved oxygen using the whole exclusive contribution areas with determination coefficients better than R2≈0.8. Nitrate and total phosphorous did not produce valid models. We suspect that the transformation delay from total ammonia nitrogen to nitrate might be an important factor for the poor result for this parameter. For phosphorous, we think that the phosphorous sink in the bottom sediment might be the most limiting factor explaining the failure of our models.  相似文献   

20.
Land use impact on soil quality in eastern Himalayan region of India   总被引:1,自引:0,他引:1  
Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5 % of the variance in dataset. The four PCs together explained 92.6 % of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0–1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60)?>?cultivated low land (0.57)?>?plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58 %)?>?exch. Al (17.1 %)?>?available P (8.9 %)?>?available Mn (8.2 %)?>?silt content (7.8 %). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil quality under many exploitatively cultivated land use systems in eastern Himalayan region of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号