首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
以威海市锦湖韩亚高尔夫球场为对象,对其地下水水样进行检测,并根据检测结果,对地下水水质进行分析评价。结果表明,地下水中氯化物、高锰酸盐指数、亚硝酸盐、氨氮等指标存在检出超标情况,特征污染因子未检出,说明按照正常剂量施用农药和化肥对于高尔夫球场及周边地下水污染较小。  相似文献   

2.
介绍了江苏省生产的主要农药品种,综述了草甘膦、丁草胺、乙草胺、百草枯和氟乐灵等5种除草剂,代森锰锌、戊唑醇、百菌清、甲基硫菌灵和三环唑等5种杀菌剂,毒死蜱、吡虫啉、氯氰菊酯等3种杀虫剂,以及乙烯利、多效唑等2种植物生长调节剂的生产现状及危害,以及上述农药在水、土壤等环境介质中的检测方法。以期为相关农药残留的检测方法标准化、环境中控制限值的制定、农药类环境事故应急监测以及农药生产与使用的环境监管提供技术支持。  相似文献   

3.
农业面源污染已经成为全球水污染的主要来源,其中具有生物毒性的农药污染物对人体健康和生态环境安全构成了严重威胁。分析了我国农田农药流失现状,指出流失的主要农药品种与用药历史和特点密切相关,水体中检出的有机氯农药主要源于早期农药残留,检出的有机磷农药和长残效除草剂部分种类目前仍在使用。提出从影响农药流失的各个环节入手,制定严密的减控策略。植物缓冲带是拦截农药流失的常用措施,可以实现对农业面源污染的可持续治理。建议实行生态功能区划,严格限制高毒农药的施用,减少化学农药施用量,规范农药喷洒器械和施药技术,从源头上控制农药流失,从而降低农业非点源污染带来的危险。  相似文献   

4.
当前我区施用有机磷农药极为普遍。用作蔬菜杀虫剂的有十种之多。用量较大的是敌敌畏、乐果、氧化乐果、甲基对硫磷、对硫磷等五种。所以对蔬菜中有机磷农药残留的测定将成为常规分析。有机磷农药的分析方法有许多文献报导:比色法、极谱法、紫外分光光度法等。这些方法常用于单种有机磷农药成份的分析。薄层色谱法虽可分离多种有机磷农药,与气相色谱法相比定量精度差。后者则有选择性强,灵敏度高等特点。  相似文献   

5.
研讨利用固相抽出 /HPLC法 ,对高尔夫球场使用农药进行监测的分析方法。此方法对测定水体中残留农药具有简便、准确、实用等特点 ,适合在我国开展进行  相似文献   

6.
洞庭湖流域土壤中有机氯杀虫剂的残留规律研究   总被引:3,自引:1,他引:2  
2004年5月采集了洞庭湖流域45个土壤样品,用AES萃取技术,使用GC/MS方法测定了样品中的六氯笨、滴滴涕(DDTs)、氯丹、艾氏剂、狄氏剂、异狄氏剂、七氟和灭蚁灵.结果表明,六氯苯、滴滴涕的检出率为100%,氯丹和灭蚁灵的检出率很低,艾氏剂、狄氏剂、异狄氏剂和七氯未检出.总有机氯杀虫剂残留量平均值216.24μg/k,其中滴滴涕214.7μg/kg,占总OCPs的99.3%,且有些土壤样品中w(DDT)/w(DDE DDD)值较大,说明DDTs曾作为湘江流域的主要杀虫剂在洞庭湖流域土壤中广泛施用过,并且近期内仍然有输入.六氯苯的残留量虽然较低,但其施用范围广泛.总OCPs在棉田中的残留量很高,在茶场土壤中最低,表明棉田土壤曾因为各种原因施用过大量的有机氯杀虫剂,茶场土壤中有机氯农药的残存量处于安全范围.  相似文献   

7.
为探明太阳山湿地浮游植物优势功能群季节演替规律及其主要驱动因子,于2019年4月(春季)、7月(夏季)、10月(秋季)和2020年1月(冬季)采样分析了太阳山湿地浮游植物的种类组成、优势种、丰度、生物量及季节变化,同时测定了水环境理化因子指标,采用冗余分析方法研究了浮游植物优势功能群的优势度、丰度与水环境因子之间的关系。结果表明:太阳山湿地浮游植物可分为22个功能类群;优势功能群的季节演替和空间分异特征明显,存在一定的规律性。春、秋、冬3个季节的浮游植物以硅藻门为主,夏季以绿藻门和蓝藻门为主。春季优势功能群主要为D、C、P,以硅藻门种类为主;夏季优势功能群主要为J、Lo、TC、M、H1,以硅藻门、绿藻门、蓝藻门种类为主;秋季优势功能群主要为D、S1、MP,以硅藻门、绿藻门种类为主;冬季优势功能群主要为D、X3,以硅藻门种类为主。影响太阳山湿地浮游植物优势功能群季节演替的水环境因子有水温(WT)、pH、溶解氧(DO)、透明度(SD)、盐度(Sal)、氮磷营养元素含量、化学需氧量(CODCr)和高锰酸盐指数(CODMn)。4个湖区浮游植物优势功能群的时空差异与水环境因子密切相关,其中,西湖区浮游植物优势功能群的季节演替驱动因子为pH、DO、WT、总磷(TP),东湖区为pH、DO、WT、氮磷营养元素含量,南湖区为pH、DO、CODCr、五日生化需氧量(BOD5),小南湖区为pH、DO、WT、BOD5、CODCr、TP。pH、DO、WT、BOD5、SD等水环境因子的季节差异以及TP、TN、氨氮(NH3-N)、CODMn等水环境因子的湖区差异是太阳山湿地浮游植物优势功能群出现季节演替的主要原因。  相似文献   

8.
利用GC-ECD检测了山美水库流域表层沉积物中DDTs农药含量,分析了其残留与组成特征及生态风险.结果表明,表层沉积物中DDTs平均含量为4.07 ng/g,其含量范围为0.96~8.20 ng/g;DDTs含量大小顺序为桃溪与湖洋溪汇流(8.20 ng/g)>湖洋溪(4.67 ng/g)>桃溪(4.59 ng/g)>山美水库(1.96 ng/g).表层沉积物中新的DDTs输入量比较少;沉积物中DDTs主要来自于早期残留或是施用农药长期风化后的土壤;大多数采样点DDTs发生好氧生物降解,降解产物以DDE为主.对照Ingersoll风险评估标准,表层沉积物中DDTs农药残留具有较高的生态风险.  相似文献   

9.
基于荧光素酶发光体系测试饮用水中农药的综合毒性   总被引:1,自引:0,他引:1  
利用农药对荧光素酶催化的发光反应具有非常显著的抑制作用,对甲拌磷、乐果、毒死蜱、百草枯等4种农药分别进行单一毒性和等比混合法联合毒性测试,建立了一种快速检测饮用水中农药综合毒性的生物学方法。试验结果表明,单一农药乐果、甲拌磷、百草枯和毒死蜱的EC50值分别为7.56 mg/L、12.7 mg/L、19.0 mg/L和65.3 mg/L,毒性强弱顺序为乐果甲拌磷百草枯毒死蜱,相关系数≥0.995;将4种农药以等比方式配制成两两混合液后,当质量浓度为20.0 mg/L~100 mg/L时,除百草枯与毒死蜱表现为毒性协同外,其他两两混合农药的毒性以拮抗作用为主。  相似文献   

10.
文章根据我国农药生产和使用的特点,结合环境污染事故中常见的农药、保障农产品安全需控制的农药残留等,阐述了我国环境中需重点控制的农药残留种类,并对其监测方法和控制标准进行了综述,旨在为农药污染事件中快速判断污染类别、科学确定监测方法、及时处置污染提供技术保障。  相似文献   

11.
The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.  相似文献   

12.
The extensive use of the broad range of pesticides employed to maintain golf courses has prompted serious environmental concerns in Japan since courses tend to be located in mountainous regions, often in close proximity to virgin water sources. Since older empirical methods are not appropriate for substance identification and determination of substance concentrations on the ppb order, gas chromatographyquadrupole mass spectrometry (GC/QPMS) can be employed. A simple extraction of 500 ml of drainage pond water gives a sample which allows identification of pesticides with quantitation on the ppb order using selected ion monitoring (SIM). A sample of drainage pond water from a golf course revealed fenitrothion, funitrothion, chlorothalonil and isoprothiolane in concentrations of 120.1, 20.7, 45.6 and 130.5 ppb, respectively.  相似文献   

13.
This study explores the associations of pesticide occurrence in groundwater to geological characteristics of the monitoring points (MPs) contributing area. Pesticide analyses were undertaken during a 2-year groundwater monitoring campaign which generated 845 samples. MCPA and mecoprop were the most frequently detected pesticides in groundwater. Each MP (n?=?158) had a specifically delineated zone of contribution (ZOC) and the dominant physical characteristics present from nine national datasets were recorded for each ZOC. Associations between detections in groundwater and the dominant physical characteristic in each MPs ZOC tested were then statistically analyzed using Fisher’s exact test, logistic regression, and multiple logistic regression. The original physical characteristic datasets used that were associated with detections in groundwater were the type of MP, aquifer type, and Quaternary deposit type. Logistic regression revealed that springs, regionally important aquifer types, aquifers with a karstic flow regime, and alkaline Quaternary deposits in existence above karst aquifers in a MP’s ZOC were more likely to have a pesticide detection in groundwater. Multiple regression from this exploratory work showed some mutual dependency between soil association, aquifer type, and the Geological Survey of Ireland groundwater vulnerability map. The combination of national monitoring data and physical attribute datasets can be used to explore key areas where groundwater is more vulnerable to pesticide contamination.  相似文献   

14.
Monitoring programs in the agriculturally intense San Joaquin River Valley of California have periodically found organophosphate (OP) insecticide concentrations, predominantly chlorpyrifos, diazinon and methidathion, at levels high enough to cause mortality for the aquatic invertebrate Ceriodaphnia dubia. These detections are likely the result of off-site movement from treated fields. However, the relative significance and magnitude of off-site transport pathways cannot be readily deduced from monitoring data alone. Therefore, a comprehensive modeling system has been constructed to estimate temporal and spatial pesticide source magnitudes and to follow the pesticide dissipation pathways once in surface water. The USEPA models HSPF and PRZM3 were used for the hydrology and non-point source predictions, respectively. Spray drift was accounted for using the mechanistic model AgDrift. The Orestimba Creek Watershed in the San Joaquin Valley was characterized and used as a typical watershed for this region. Representative transport pathways were ranked and quantified, and numerical implementation of best management practices (BMPs) determined which practice may have the highest likelihood for reducing pesticide loadings. Approximately 85% of the predicted chlorpyrifos mass detected between May 1, 1996, and April 30, 1997 resulted from drift, with the largest contributions coming from walnut orchards immediately adjacent to Orestimba Creek. Various simulated drift mitigation measures suggest chlorpyrifos mass loadings can be decreased by over 90% depending upon the type of mitigation chosen. Imposed drift BMPs should be effective in reducing chlorpyrifos levels found in surface waters of the San Joaquin valley if the Orestimba creek watershed is considered representative of watersheds found in this area of California.  相似文献   

15.
16.
Most agronomic situations involve a sequence of herbicide, fungicide, and insecticide application. On the other hand, use of pesticidal combinations has become a standard practice in the production of many agricultural crops. One of the most important processes influencing the behavior of a pesticide in the environment is its degradation in soil. It is known that due to several pesticide applications in one vegetation season, the pesticide may be present in mixtures with other pesticides or xenobiotics in soil. This study examines the role which a mixture of chemicals plays in pesticide degradation. The influence of other pesticides on the rate of pendimethalin (PDM) degradation in soil was measured in controlled conditions. Mixtures of PDM with mancozeb or mancozeb and thiamethoxam significantly influenced the degradation of pendimethalin under controlled conditions. The second type of mixtures, with metribuzin or thiamethoxam, did not affect the behavior of pendimethalin in soil. Also, we determined the influence of water content on the rate of pendimethalin degradation alone in two soils and compared it to the rate in three pesticide mixtures. We compared two equations to evaluate the predictors of the rate of herbicide dissipation in soil: the first-order kinetic and the non-linear empirical models. We used the non-linear empirical model assuming that the degradation rate of a herbicide in soil is proportional to the difference of the observed concentration of herbicide in soil at time and concentration of herbicide in the last day of measurement.  相似文献   

17.
A multi-level pesticide assessment methodology has been developed to permit regulatory personnel to undertake a variety of assessments on the potential for pesticide used in agricultural areas to contaminate the groundwater regime at an increasingly detailed geographical scale of investigation. A multi-level approach accounts for a variety of assessment objectives and detail required in the assessment, the restrictions on the availability and accuracy of data, the time available to undertake the assessment, and the expertise of the decision maker. The level 1: regional scale is designed to prioritize districts having a potentially high risk for groundwater contamination from the application of a specific pesticide for a particular crop. The level 2: local scale is used to identify critical areas for groundwater contamination, at a soil polygon scale, within a district. A level 3: soil profile scale allows the user to evaluate specific factors influencing pesticide leaching and persistence, and to determine the extent and timing of leaching, through the simulation of the migration of a pesticide within a soil profile. Because of the scale of investigation, limited amount of data required, and qualitative nature of the assessment results, the level 1 and level 2 assessment are designed primarily for quick and broad guidance related to management practices. A level 3 assessment is more complex, requires considerably more data and expertise on the part of the user, and hence is designed to verify the potential for contamination identified during the level 1 or 2 assessment. The system combines environmental modelling, geographical information systems, extensive databases, data management systems, expert systems, and pesticide assessment models, to form an environmental information system for assessing the potential for pesticides to contaminate groundwater.  相似文献   

18.
Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured in the estuary. This study suggests that the same pyrethroid and organophosphate pesticides that have been shown to cause water and sediment toxicity in urban and agriculture water bodies throughout California, have the potential to affect estuarine habitats. The results establish baseline data in the Santa Maria River estuary to allow evaluation of ecosystem improvement as management initiatives to reduce pesticide runoff are implemented in this watershed.  相似文献   

19.
This paper reports the results of a pesticide monitoring survey on wine grapes from the 2008–2010 vintage from vineyards grown according to integrated pest management strategies. A multi-residue gas chromatography-mass spectrometry method in electron ionization and chemical ionization mode has been used for the determination of 30 pesticides in wine samples. The analytical method showed good recoveries and allowed a good separation of the selected pesticides. Repeatability and intermediate precision showed good results with CV?<?20 %. The instrumental method limits of determination (LOD) and of quantification (LOQ) were below the maximum residue levels set in wine. The analysis of the wines showed that pesticide residues were below the instrumental LOQ, and most of them were undetectable (<LOD). Only the 38 % of the pesticide applied has been detected in at least one cultivar. Metalaxil, myclobutanil, and penconazole were the pesticides most frequently found, while carignano and vermentino were the cultivars with the higher number of residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号