首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用液液萃取处理水样,用气相色谱-串联质谱法测定样品中五氯酚及其钠盐,通过优化测定条件,使方法在1.00μg/L~500μg/L范围内线性良好。检出限和定量限分别为1.00μg/L和5.00μg/L,空白水样五氯酚钠3个质量浓度水平的加标回收率为89.8%~98.4%,5次平行试验测定结果的RSD为5.5%~10.7%。  相似文献   

2.
建立了同时测定水中5种氯酚类化合物的离子色谱紫外检测法。水样经0.45μm水相针式滤器过滤后,以250 nm为检测波长,5%的氨水甲醇-1%的硫酸铵溶液(V∶V=80∶20)为流动相进行检测。结果表明,在2-氯酚质量浓度为0.1~1.6 mg/L,其余4种氯酚质量浓度为0.01~0.16 mg/L范围内,线性相关系数均>0.999;2-氯酚和2,4-二氯酚的检出限分别为0.03和0.004 mg/L,其余3种氯酚的检出限为0.003 mg/L。低、中、高3种加标浓度样品的加标回收率为94.1%~100.8%,相对标准偏差(RSD)为2.5%~9.9%。该方法前处理简单,灵敏度、准确度和精密度均较好,适用于基层检测机构对生活饮用水中5种氯酚类化合物的日常快速检测。  相似文献   

3.
采用邻苯二甲醛柱前衍生5种氨基酸,用反向高效液相色谱法测定衍生化产物,通过优化衍生化条件和色谱条件,使该方法在0.25μmol/L~25μmol/L范围内线性良好。方法检出限为0.08μmol/L~0.12μmol/L,标准溶液测定6次的RSD为0.1%~1.2%,空白加标样的回收率为80.3%~115%。用该方法测定实际水样,5种氨基酸测定值均低于0.514μmol/L,加标回收率在75.5%~120%之间。  相似文献   

4.
采用高效液相色谱(HPLC)-电感耦合等离子体质谱(ICP/MS)联用测定废水中可滤态的甲基汞和无机汞,优化了仪器工作条件,讨论了方法干扰及校正办法。甲基汞和无机汞在0.500μg/L~25.0μg/L范围内线性良好,检出限分别为0.03μg/L和0.07μg/L,废水样品平行测定的RSD分别为6.5%~7.6%和6.2%~6.8%,加标回收率分别为84.0%~87.0%和88.0%~92.4%。  相似文献   

5.
选用配备了2种不同检测器(电导检测器和直流安培检测器)的离子色谱仪对稀释后过0.22μm滤膜的水样进行分析。配备有直流安培检测器的离子色谱仪测定水中碘化物的方法在0.100~20.0μg/L范围内线性关系良好,相关系数(r)=0.9999,方法检出限为0.030μg/L,测定下限为0.120μg/L,样品加标回收率为95.0%~104%,相对标准偏差为1.06%~1.64%;配备有电导检测器的离子色谱仪测定水中碘化物的方法在20.0~2.00×105μg/L范围内线性关系良好,相关系数(r)=0.9995,方法检出限为2.00μg/L,测定下限为8.00μg/L,样品加标回收率为99.0%~110%,相对标准偏差为0.71%~3.12%。离子色谱-直流安培检测器法测定水中碘化物的方法准确度高、灵敏度高、精密度好,检出限相对较低,适用于测定ρ(碘化物)≤20.0μg/L的清洁水样;离子色谱-电导检测器法主要适用于测定ρ(碘化物)≥20.0μg/L的水样。  相似文献   

6.
采用固相萃取-高效液相色谱法测定水中7种氯酚类化合物,Waters OASIS WAX柱萃取效率最高,最佳萃取时间和洗脱时间分别为60和5 min。该法的线性范围为1.0~40 mg/L,检出限为0.015~0.5μg/L,精密度为0.558%~2.22%,回收率为83.2%~105%。该法适用于地表水及饮用水中氯酚类化合物的检测。  相似文献   

7.
城市污水处理厂水样中菊酯类农药残留分析   总被引:9,自引:0,他引:9  
建立了基于C18固相萃取柱和气相色谱/电子捕获(GC/ECD)分析水体中环境激素类物质——菊酯类农药的分析方法,并对方法的回收率、灵敏度进行了评价,同时分析了北京市高碑店、北小河两个城市污水处理厂进水与出水中菊酯类农药的浓度,研究发现在其废水中存在联苯菊酯、氯氰菊酯、氰戊菊酯和溴氰菊酯,浓度在0.013~0.920μg/L之间。结果表明,曝气活性污泥法对菊酯类农药的去除效果较好。方法对菊酯类农药的回收率达到67.7%~96.2%,方法检测限为0.010~0.015μg/L。  相似文献   

8.
采用实验室与现场相结合的方法对砷快速测定方法的可靠性和应用价值进行研究。研究显示,该法检出限为2μg/L,具有较好的准确度,对于砷质量浓度5μg/L的水样,相对误差为1.00%~10.00%,对于砷质量浓度为5μg/L的水样,虽然相对误差较大,为22.40%,但其测定结果在砷污染快速监测可接受的结果范围内;精密度较高,相对标准差为5.27%~16.54%;同时具有较好的再现性。该方法能减少砷污染筛查的工作量,可满足应对砷污染突发事件应急监测的需求。  相似文献   

9.
采用高效液相色谱法(HPLC)和高效液相色谱-三重四级杆质谱联用法(HPLC-MS/MS)测定地表水及饮用水中11种酚类化合物,通过优化测定条件,使HPLC法在0.020 mg/L~50.0 mg/L范围内,HPLC-MS/MS法在0.500μg/L~250μg/L范围内线性良好,方法检出限分别为0.005μg/L~0.031μg/L和0.005μg/L~1.56μg/L。未检出的实际样品加标回收率分别为57.2%~96.7%和81.3%~113%,RSD分别为1.5%~5.3%和3.9%~17.7%。  相似文献   

10.
用氢氧化钠处理水样,将水样中的三氯乙醛转化为三氯甲烷,用顶空-气相色谱/质谱联用法间接测定水中三氯乙醛,通过优化试验条件,使该方法在1.00μg/L~20.0μg/L之间线性良好,方法检出限为0.12μg/L。用该方法测定3个质量浓度水平的空白加标样,RSD为2.6%~4.4%,回收率为99.4%~101%。3批实际水样只有废水样检出三氯乙醛,实际水样加标回收率为76.2%~104%。  相似文献   

11.
建立超高效液相色谱-电喷雾串联四极杆质谱快速测定水中微囊藻毒素LR(MC-LR)的方法。水样经0.2μmGHP一次性针头过滤器过滤,应用超高效液相色谱/电喷雾串联四极杆质谱仪多离子反应监测(MRM)法定量检测MC-LR。经方法学验证,该方法对MC-LR的最低检出限LOD为0.08μg/L(进样量10μl),最低定量限LOQ是0.10μg/L。在0.2~20.0μg/L的线性范围中,相关系数r=0.9982,回收率范围91.5%~110.3%。方法灵敏度高,专属性强,操作简便快速,定量准确,测定浓度范围宽,是环境水质样品中MC-LR含量检测的理想方法。  相似文献   

12.
建立了测定土壤中高氯酸盐的离子色谱法,通过前处理条件优化和色谱条件优化形成准确高效的测定方法,并采集实际土壤样品进行实验验证。称取 1.00 g土壤样品,用20 mL超纯水混合均匀,超声提取40 min,离心后采用水系微孔滤膜过滤的前处理方式,土壤中高氯酸盐的加标回收率最稳定;在淋洗液浓度和流速都满足测定条件的前提下,为了缩短高氯酸盐的保留时间,避免复杂基质干扰,延长淋洗液发生器的使用寿命以及保护色谱柱,选择淋洗液浓度为40 mmol/L,流速为1.0 mL/min。在优化条件下,高氯酸盐的方法检出限为0.04 mg/kg。实际样品加标中高氯酸盐的相对标准偏差为1.9%~8.8%,加标回收率为91.0%~106%,结果表明离子色谱法测定土壤中高氯酸盐简单、灵敏、快速。  相似文献   

13.
为方便地表水中总微囊藻毒素(TMCs)的预警监测,探究提取MC-LR、MC-RR、MC-YR的不同快速前处理方法,建立同时测定3种TMCs的煮沸-过滤-UPLC-MS/MS法。该方法在0.006μg/L~50.0μg/L范围内线性良好,方法检出限为0.006μg/L~0.010μg/L,实际水样3个质量浓度水平的加标回收率为88.6%~108%,6次测定结果的RSD为2.6%~9.4%。  相似文献   

14.
超高效液相色谱法测定土壤中微量阿特拉津   总被引:1,自引:0,他引:1  
采用超高效液相色谱仪,建立了土壤中微量阿特拉津的快速检测方法。研究结果表明:采用反相C18色谱柱,以甲醇/水(70∶30,v/v)为流动相,流速为0.2 ml/min,柱温为30℃,检测波长为220 nm条件下,在12.5~1000μg/L质量浓度范围内线性关系良好(r=0.9999),检出限0.18×10-3 mg/kg,加标回收率为69.0%~94.8%,相对标准偏差为2.5%~8.0%,该方法具有灵敏度高、重复性好、简便、快速、干扰小、精密度高的特点,可用于土壤中阿特拉津的快速检测。  相似文献   

15.
采用HP-INNOWAX毛细管柱、气相色谱氢火焰离子化检测器测定工业废气和废水中的N,N-二甲基甲酰胺,可能共存的丙酮、乙醇和乙酰丙酮均对测试无干扰.方法在0.939 mg/L~75.1 mg/L范围内线性良好,对工业废水、无组织排放工业废气和有组织排放工业废气中N,N-二甲基甲酰胺的检出限分别为0.47 mg/L、0.16 mg/m3和0.31 mg/m3,标准溶液平行测定的RSD为1.9% ~2.2%,废水样品加标回收率为94%~ 97%.  相似文献   

16.
采用液液萃取-气相色谱/质谱联用法测定饮用水源水中19种苯胺类化合物,选择DB-5MS色谱柱,讨论了pH值对回收率的影响.方法在0.500 mg/L~5.00 mg/L范围内线性良好,19种苯胺类化合物的检出限为0.016μg/L~0.067 μg/L,标准溶液平行测定的RSD为1.2% -13.2%,实际样品加标回收...  相似文献   

17.
通过对色谱分析和样品萃取条件的选择和优化,建立了同时分析水中11种苯胺类化合物的HPLC方法。样品经乙腈盐析萃取后直接进样分析,采用 ODS色谱柱,以乙腈-水为流动相进行梯度洗脱,用PDA检测。结果表明,11种苯胺类化合物在0.20~100mg/L范围内其浓度和检测信号呈良好的线性关系,方法检出限为0.002~0.007mg/L,地表水和废水样品加标回收率为81.6%~97.4%,相对标准偏差为1.5%~5.5%。  相似文献   

18.
The most promising technologies to remove perchlorate from water are ion exchange and biological reduction. Although successful, ion exchange only separates perchlorate from water; it does not eliminate it from the environment. The waste streams from these systems contain the caustic or saline regenerant solutions used in the process as well as high levels of perchlorate. Biological reduction could be used to treat the regenerant waste solutions from the ion exchange process. A treatment scheme, combining ion exchange and biodegradation, is proposed to completely remove perchlorate from the environment. Perchlorate-laden resins generate brines containing salt concentrations up to 6% or caustic solutions containing up to 0.5% ammonium. Both, high salt and ammonium hydroxide concentrations are potentially toxic to microorganisms. Therefore, the challenge of the proposed system is to find perchlorate reducing microorganisms that are effective under such stressful conditions. Preliminary results have shown that salt concentrations as low as 0.5% reduced the perchlorate biodegradation rate by 30%; salt concentrations greater than 1% decreased this rate to 40%. Although biodegradation was seen in ammonium levels of 0.4%, 0.6% and 1%, the perchlorate biodegradation rate was 90% of that at 0% ammonium hydroxide. Further research will focus on the isolation and/or acclimation of microorganisms that are able to biodegrade perchlorate under these stressful conditions.  相似文献   

19.
建立了液相色谱法直接测定水中的10种硝基苯类化合物的方法,C18色谱柱为分离柱,检测波长为254 nm,以甲醇和水为流动相,前处理过程水和甲醇以9∶1的体积比混合,水样过微孔滤膜后直接进液相色谱分析。该法分析10种硝基苯类化合物的检出限为4.3~5.5μg/L,加标回收率为79%~136%,精密度为6.8%~13%,符合监测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号