首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
新污染物具有生物毒性、环境持久性和生物累积性,威胁人体健康和生态环境。随着综合国力的提升和人民对美好生活的向往,新污染物治理是“十四五”及今后的重点任务。简述了新污染物的定义、分类及危害,分析了我国新污染物的分布特征,针对新污染物风险防范过程中存在的新污染物底数不清、管理水平缺乏、环保意识不强等问题。提出,开展摸底调查,提高管理水平,科普宣传等措施建议,以期为实现新污染物的风险管控和保障人民生命健康安全提供参考。  相似文献   

2.
利用Triolein半渗透膜采样技术测定洋河水中的优先污染物   总被引:6,自引:0,他引:6  
应用Triolein半渗透膜采样器采集了河北洋河宣化至官厅水库河段水样,根据测定采样器中多氯联苯污染物(PCBs)及其它优先污染物浓度,可以估算这些污染物在河段水体中的平均浓度。将结果与同时同地采集的水样,经萃取浓缩后分析得到的结果比较,发现对于不同类型污染物,二者符合程度不同。本研究证明半渗透膜被动采样技术可用于水中多氯联苯等难降解污染物的定量监测,有可能在我国的优先污染物监测工作中发挥作用  相似文献   

3.
广州白云国际机场飞机大气污染物排放分析   总被引:5,自引:0,他引:5  
根据收集到的2008-2012年广州白云国际机场航班起降次数,参考《珠江三角洲非道路移动源排放清单开发》飞机污染物估算方法及排放因子,计算出此期间机场飞机大气污染物排放量,并与2010-2012年广州市机动车污染物排放情况对比。结果表明:飞机大气污染物排放量随客运量的增长呈逐年上升趋势,而与机动车排放相比,飞机大气污染物排放量较小,故现阶段仍应以机动车作为移动源污染控制的重点。  相似文献   

4.
环境保护部日前颁布的11项排放标准,分别为:《制浆造纸工业水污染物排放标准》《电镀污染物排放标准》《羽绒工业水污染物排放标准》《合成革与人造革工业污染物排放标准》《发酵类制药工业水污染物排放标准》《化学合成类制药工业水污染物排放标准》《提取类制药工业水污染物排放标准》《中药类制药工业水污染物排放标准》《生物工程类制药工业水污染物排放标准》《混装制剂类制药工业水污染物排放标准》《制糖工业水污染物排放标准》。  相似文献   

5.
通过建立和完善空气中有机污染物的分析方法,对徐州市区空气中的有机污染物开展了全面详细的探查,弄清了市区空气中有机污染物的污染现状及时空变化规律,填补了徐州市空气监测数据中的有机污染物的空白,为开展空气有机污染物的调查和监测奠定了一定的基础。  相似文献   

6.
持久性有机污染物调查是我国履行《关于持久性有机污染物的斯德歌尔摩公约》,开展持久性有机污染物控制工作的一项重要举措。为做好此项工作,新疆维吾尔自治区环保局按照国家环保总局环发[2006]207号文《关于开展全国持久性有机污染物调查的通知》的要求,在2007年下半年进行了详细的工作布署,  相似文献   

7.
文中指出了《大气污染物综合排放标准》存在的不完善性,提出建立大气污染物总量控制制度,使大气污染物的控制由浓度控制转向总量与浓度结合的控制体系;建立大气污染物总量控制法规体系,规范排污行为.并阐述了大气污染物总量控制指标的技术路线。  相似文献   

8.
各类有机氯污染物在我国的污染非常普遍,主要以六六六,滴滴涕,多氯联苯为主.文中阐述了在20世纪80年代初期禁用的这些有机氯污染物在我国的含量变化,引起其含量差异的原因.阐明了这类污染物在大范围内的分布趋势,提出了在全国乃至全球范围内的这类污染物的监控方法,以及微观影响这些污染物的降解,迁移的因素。  相似文献   

9.
土壤耕作法治理井场污染的可行性研究   总被引:1,自引:0,他引:1  
通过介绍井场污染物石油,泥浆,废水等对土壤,农作物和植物的影响,综合多种实验结果,对土壤耕作法治理井场污染物进行了可行性研究,提出了土壤作法治理井场污染物的可行性依据。从进场污染物状况和土壤的耐受浓度可知,井场污染状况具有备土壤耕作法治理的条件,且可从根本上降解和消除污染物而不存在潜在危害,所以有望在油田推广应用  相似文献   

10.
以某化学品泄漏造成大气污染为例,采用虚拟治理成本法,通过对污染物单位治理成本的调查,污染物危害系数的确定等步骤量化生态环境损害的数额。针对生态环境损害价值量化过程中主要污染物的选择、单位治理成本的确定、危害类别的判断等技术关键点,提出,应结合环境质量标准限值,污染物危害系数等综合因素选择主要污染物;采用成本函数法来确定某一地区单位治理成本更容易被采纳;利用标签制度(GHS)危险性类别的结论能够快速确定污染物危害系数,以期为大气环境损害鉴定评估技术方法的完善提供参考和借鉴。  相似文献   

11.
River Yamuna, like most of the major rivers of India, has become increasingly polluted over the years from both point and non-point sources, particularly in the urban sectors such as Delhi. Field studies, conducted in January, 1994 have investigated the impact of wastewater discharges from four major drains (Najafgarh, Power House, Barapula, Kalkaji) on the overbanks, floodplains and Eichhornia in River Yamuna in Delhi, with particular reference to elemental contamination. It is concluded that except for Cd and Co, overall mean soil concentrations along the full stretch of the river in Delhi are within the world background levels of uncontaminated soils. However, the wastewater discharges from the drains, with the exception of Barapula drain, generally increase the elemental concentrations of overbank soils downstream of the discharges. Eichhornia plants growing along the banks receiving wastewaters from the Najafgarh and Barapula drains are unhealthy and reduced in population which can be attributed to a combination of alkaline pH of the growth medium, metal toxicity and high BOD at the site receiving effluents from the Najafgarh drain, and alkaline pH, metal toxicity and the turbid conditions of water with fly ash particle deposition on the plant surfaces at the site receiving effluents from the Barapula drain. Generally, considering the entire stretch of the river in Delhi, the roots of these plants growing on the overbank soils are found to be accumulators of all elements except Co, Al and Fe, with Co uptake being minimal. There are marked differences in elemental uptake of the water hyacinths growing on the overbanks and floodplains of the river.  相似文献   

12.
In view of their crucial role in water and solute transport, enhanced monitoring of agricultural subsurface drain tile systems is important for adequate water quality management. However, existing monitoring techniques for flow and contaminant loads from tile drains are expensive and labour intensive. The aim of this study was to develop a cost-effective and simple method for monitoring loads from tile drains. The Flowcap is a modified Sutro weir (MSW) unit that can be attached to the outlet of tile drains. It is capable of registering total flow, contaminant loads and flow-averaged concentrations. The MSW builds on a modern passive sampling technique that responds to hydraulic pressure and measures average concentrations over time (days to months) for various substances. Mounting the samplers in the MSW allowed a flow-proportional part of the drainage to be sampled. Laboratory testing yielded high linear correlation between the accumulated sampler flow, q total, and accumulated drainage flow, Q total (r 2?>?0.96). The slope of these correlations was used to calculate the total drainage discharge from the sampled volume, and therefore contaminant load. A calibration of the MSW under controlled laboratory condition was needed before interpretation of the monitoring results was possible. The MSW does not require a shed, electricity, or maintenance. This enables large-scale monitoring of contaminant loads via tile drains, which can improve contaminant transport models and yield valuable information for the selection and evaluation of mitigation options to improve water quality. Results from this type of monitoring can provide data for the evaluation and optimisation of best management practices in agriculture in order to produce the highest yield without water quality and recipient surface waters being compromised.  相似文献   

13.
CBERS-2B数据提取平原区细小地物系数的方法探讨   总被引:1,自引:0,他引:1  
利用Landsat TM等中等分辨率影像对区域生态环境进行监测与评价时,由于影像分辨率的局限性,仍有许多地物无法解译出来,如农田中的道路、水渠等,文章主要研究了利用图像融合增强和人机交互式解译等技术方法,对CBERS-2B的CCD影像和HR影像进行处理,提取平原区农田中道路面积比系数,从而将农田中未解译的地物扣除。结果表明,CCD影像与HR影像经过融合增强处理后,可以进行平原地区村级及以上道路的提取。  相似文献   

14.
This paper reports a reconnaissance survey of the concentrations of sterol compounds (as indicators of fecal contamination) in a large water supply system in southeast Australia comprising a network of rivers, channels, and drains. Levels of coprostanol and cholestanol were determined in surface water and bottom sediment using gas chromatography–mass spectrometry analysis across 17 strategic sampling sites and over 12 months. Clear differences in the levels of fecal contamination were observed among sites. Four sites routinely contained high levels of the fecal indicator sterols indicated from surface water and sediment sample analysis. Coprostanol concentrations at each location varied from 0 ng/L at the reference site to 11,327 ng/L in a surface water sample of a drain directly downstream of a knackery. The majority of the sites contained coprostanol in the range of 500 to 800 ng/L. Since no fecal-associated sterol compounds were detected at the external reference sites, these were assumed to be free from fecal contamination. Sewage water discharge and/or substantial water runoff maybe the principal factors contributing to fecal contamination of the supply drains and channels.  相似文献   

15.
The River Murray in Australia drains an area of one million square kilometres, but in 1981 the mouth closed for some weeks. It is important that this be prevented, as the environmental consequences of permanent closure are severe. The size of the mouth is influenced by wind and wave activity at the mouth, and by the river flow, which is controlled by a system of weirs and barrages. We have been able to demonstrate using recursive estimation techniques that river flow is the most important explanatory variable for mouth size, so that the proper management of flow alone has the potential to prevent future closures.  相似文献   

16.
Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.  相似文献   

17.
Global scarcity of freshwater has been gearing towards an unsustainable river basin management and corresponding services to the humans. It needs a holistic approach, which exclusively focuses on effective river water quality monitoring and quantification and identification of pollutant sources, in order to address the issue of sustainability. These days, rivers are heavily contaminated due to the presence of organic and metallic pollutants released from several anthropogenic sources, such as industrial effluents, domestic sewage, and agricultural runoff. It is astonishing to note that even in many developing countries, most of these contaminants are carried through open drains, which enter river premises without proper treatment. Such practice not only devastates riverine ecosystem but also gives rise to deadly diseases, such as minimata and cancer in humans. Considering these issues, the present study develops a novel approach towards simultaneous identification of major sources of pollution in the rivers, along with critical pollutants and locations using an advanced hierarchical cluster and multivariate statistical analysis. A systematic approach has been developed by agglomerating both R-mode and Q-mode analysis, which develops monoplots, two-dimensional biplots, rotated component matrices, and dendrograms (using “SPSS” and “Analyse It” software) to reveal relationships among various quality parameters to identify the pollutant sources along with clustering of critical sampling sites and pollutants. A case study of the Ganges River Basin of India has been considered to demonstrate the efficacy and usefulness of the model by analyzing 85 open drains. Both organic and metallic pollutants are analyzed simultaneously as well as separately to get a holistic understanding of all the relationships and to broaden the perspective of water characterization. Results provide a comprehensive guidance to the policy makers and water managers to optimize corrective efforts, minimize further damage, and improve the water quality condition to ensure sustainable development of the river basin.  相似文献   

18.
The rapid population growth and uncontrolled development in the coastal zone have led to major pollution impacts on creeks, estuarine, and coastal environment. Water quality models are valuable tools to understand the environmental processes for prediction of pollution impacts and evaluate future trends for management. Presently, the Malad creek in west coast of Mumbai receives wastewater and sewage from open drains and partially treated sewage from Malad and Versova treatment plants. The objective of the paper is to assess the environmental quality and estimate the extent of improvement in different parts of the creek by enhancing the collection efficiency and adequate treatment of sewage as well as disposal through ocean outfall. A hydrodynamic and water quality simulation has been carried out for the present condition in the creek and calibrated and validated with two different season data for better representation of the system. Calibrated model has been used to generate future scenarios based on various options. Among scenarios, option of treated effluent diverted to propose outfall and improvement in collection of unorganized flow through sewerage up to 40% and 60% are found most significant for biochemical oxygen demand reduction and increase in dissolved oxygen. Fecal coliform reduction is also found drastically but still very high against standard. To improve the environmental quality of the creek, still upper stretch requires more dilution and flushing due to narrow width and contribution of heavy pollution from open drains.  相似文献   

19.
The Central Valley, California, R-EMAP project assessed the effects of highly modified, agriculturally dominated landuse on the aquatic resources of the lower portion of the Central Valley watersheds. The focus of this paper is to assess the utility of the EMAP design and the River Reach File version 3 (RF3) 1:100,000 scale Digital Line Graph (DLG) as a sampling frame. The study area is 34,099 mi2(88,316 km2) and comprises the lower reaches of the Sacramento River and San Joaquin River watersheds to the 1000 ft. (305 m) elevation. Sampling sites are selected using a tessellation stratified design to represent the two main populations of interest: natural streams and man-made waterways. Sites are selected to represent 13,226 miles of streams and sloughs, and 14,648 miles of irrigation canals, ditches and drains. To achieve an approximately equal sample size across stream orders and basins, the sample design was weighted by Strahler order categories to ensure sampling occurred in the higher order streams. Based on office and field reconnaissance, the study provided information on the quality of RF3 as a sampling frame. Site selection using RF3 had a success rate of approximately 44%. The RF3 database has an error rate of approximately 7%. When human influence factors were included, the error rate increased to 16%. There was an 11% error rate when selecting sites for natural streams, and approximately a 14% error rate for man-made waterways. The reconnaissance information indicated that presence or absence of irrigation ditches and return drains depends on changing agricultural uses. Some of the error in the RF3 for natural streams and man-made waterways can be attributed to rapid urban expansion, especially in the San Joaquin basin.  相似文献   

20.
High selenium (Se) concentrations have been found in surface waters in the Kendrick Reclamation Project, Wyoming. Precipitation and irrigation water moving over seleniferous soils are contributing causes, and drought may exacerbate this. This study surveyed Se concentrations and discharges in local surface streams, irrigation drains, and the delivery canal. Sites were sampled monthly and analyzed for Se and total suspended solids (TSS). A completely randomized design with two factors (soil parent material and location, inside or outside irrigation district) was used. Mean Se concentrations were 64 μg L???1 inside the irrigation district on shale soils, 17 μg L???1 inside the district off shale soils, 5 μg L???1 outside the district on shale soils, and 3 μg L???1 outside the district off shale soils. Correlations between discharge and Se concentrations were generally negative, while correlations between discharge and Se load were generally positive. There was little correlation between load and concentration, and little correlation between TSS and Se. A comparison of Se concentrations in streams and drains showed Se concentrations were significantly higher (p?<?0.001) in streams during the irrigation season, but not in the off-season (p?=?0.515). We conclude that higher discharges decrease Se concentration, but increase load. Conversion from flood to sprinkle irrigation may increase Se concentrations by reducing discharge, but decrease Se loads going into the N. Platte River, and will likely alter the timing and magnitude of flows. Both load and concentration should be considered when implementing Se regulations and standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号