首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 156 毫秒

1.  2013年1月南京强霾时期大气细颗粒物污染特征分析  
   汤莉莉  江蓉馨  王月华  张运江  王壮  陈杨  蒋磊  崔玉航《环境工程》,2016年第3期
   2013年1月,南京经历了一次重大持续性灰霾污染过程.利用在线气体及气溶胶监测系统和扫描电迁移率颗粒物粒径谱仪,通过研究颗粒物质量浓度,主要水溶性无机离子浓度,不同时段颗粒物的数谱分布及其日变化分布,二次气溶胶及黑碳与能见度的相关性等多个方面,较为全面地分析了重霾时期大气细颗粒物的污染特征.    

2.  上海宝山区PM_(2.5)特征研究与源解析研究  
   马剑丽《环境科学与管理》,2014年第4期
   利用2011年8月-2012年7月环保局(对照点)和钢研所(工业区)两个监测点的PM2.5的24小时连续监测数据,分析了上海市宝山区大气中PM2.5的浓度时空变化特征。并以四次灰霾事件为例解析了灰霾期间大气颗粒水溶性离子特征,以及灰霾期间PM2.5源特征。PM2.5中水溶性无机离子是以二次离子为主,因此,二次离子的污染水平可反映PM2.5的污染程度,是主要影响灰霾天气产生的物质。灰霾期间大气条件有利于二次离子的大量形成,更进一步加重大气细粒子的污染。而且,宝山地区大气细粒子污染具有受本地流动源和固定源双重排放控制的特征。    

3.  城市灰霾数值预报模式的建立与应用  被引次数:11
   刘红年  胡荣章  张美根《环境科学研究》,2009年第22卷第6期
   建立了城市灰霾的数值预报模式,可模拟PM2.5中主要成分硫酸盐、有机碳、黑碳、硝酸盐和土壤尘等气溶胶的浓度分布,根据气溶胶浓度分布计算城市大气能见度,从而预测城市灰霾天气.利用城市灰霾的数值预报模式进行了冬、夏2个算例的模拟.结果表明:在PM2.5中,夏季硫酸盐的贡献率(26.6%)略高于冬季(24.0%),夏季和冬季有机气溶胶(OM)贡献率分别为35.4%和33.3%,黑碳贡献率分别为9.5%和7.1%;南京地区颗粒物的消光系数占总消光系数的95%以上,是能见度下降最主要的贡献者,其中,硫酸盐和有机物对能见度贡献最大,其次为黑碳、硝酸盐、粗粒子、土壤尘和NO2.    

4.  北京城郊冬季一次大气重污染过程颗粒物的污染特征  被引次数:9
   刘庆阳  刘艳菊  杨峥  张婷婷  张美根  钟震宇《环境科学学报》,2014年第34卷第1期
   本研究分析了北京冬季一次大气重污染过程的颗粒物污染特征,通过数学统计方法分析了其形成的可能原因.观测于2013年1月24—31日进行,在西三环城区和大兴郊区使用中流量大气颗粒物采样器采集可吸入颗粒物(PM10)和细颗粒物(PM2.5),并采用离子色谱和元素碳/有机碳分析仪分析了PM2.5上的水溶性离子、元素碳和有机碳浓度.结果表明,本次重污染天气的大气日均能见度低于3.0 km.PM10和PM2.5质量浓度日均最大值分别为675.5和453.4μg·m-3,平均质量浓度为349.2和260.8μg·m-3,超过环境空气质量标准(GB3095—2012)所规定的二级浓度限值.通过比较PM2.5上化学成分的浓度发现,在城区和郊区,此次天气形成的共同污染源为冬季燃煤燃烧、汽车尾气排放和二次有机气溶胶污染;而土壤/沙尘对郊区污染天气的形成有部分贡献.大气中PM2.5质量浓度与能见度呈对数负相关关系.    

5.  沿海城市灰霾天气与海盐氯损耗机制的关系  被引次数:5
   吴兑  吴晟  毛夏  李海燕《环境科学与技术》,2011年第Z1期
   随着经济规模迅速扩大和城市化进程加快,大气气溶胶污染日趋严重,由细粒子气溶胶造成的能见度恶化事件越来越多,这些人类活动排放的污染物,可形成灰霾天气致使能见度下降。尤其值得注意的是沿海城市灰霾天气增长较快,沿海城市灰霾天气增多与海盐气溶胶粒子的氯损耗机制关系密切。我国30年前在粉尘污染时代建立的空气质量评价体系,已经远远不能描述新型复合空气污染类型,尤其是不能描述细粒子污染的情况,能见度的恶化主要与细粒子的浓度关系比较大,而与气溶胶的质量浓度关系不大。能见度与PM2.5尤其是PM1有非常好的关系,因而目前用能见度来描述灰霾天气是最好的指标。    

6.  霾天气南京市大气PM_(2.5)中水溶性离子污染特征  被引次数:5
   魏玉香  杨卫芬  银燕  芮冬梅  杭维琦  孙娟  柏松  陈魁《环境科学与技术》,2009年第32卷第11期
   为了讨论南京市大气细颗粒物(PM2.5)及水溶性组分在霾天气下的污染水平和污染特征,2007年6月10日至2008年5月29日对南京市大气细粒子PM2.5进行了采样,用PM2.5在线监测浓度、离子色谱法等分别测得PM2.5的质量浓度、水溶性离子组成,初步研究了南京市大气细粒子(PM2.5)及水溶性组分在霾天气下的污染水平和污染特征。结果表明,南京市大气细颗粒物污染严重,霾天气下PM2.5中总水溶性离子质量浓度为54.28μg/m3,为非霾天气的1.6倍。分析的6种离子中SO42-、NO3-、NH4+是PM2.5的主要组成成分。灰霾期间PM2.5与NO3-、SO42-、NH4+的相关性较高,PM2.5中颗粒物的主要存在形式可能为NH4Cl、NH4NO3,(NH)42SO4或NH4HSO4。对比不同季节不同天气下的SOR(SO2转化率)和NOR(NOx转化率),发现霾天气下SO2和NOX转化率高于正常天气,表明SO2、NO2在霾天气更容易转化为二次粒子。    

7.  南京地区大气灰霾的数值模拟  被引次数:20
   胡荣章  刘红年  张美根  蒋维楣  张予燕《环境科学学报》,2009年第29卷第4期
   从环境角度出发,在化学成分分析的基础上,利用灰疆与能见度的关系,数值模拟了南京地区能见度分布及灰霾天气现象.研究表明:冬夏两季SO2-4/NO-3质量比为5.39;风速、相对湿度、PM2.5浓度是灰霾天气形成的主要影响因素;能见度模拟结果很好地体现了细粒子成分的污染分布特征,在南京地区,硫酸盐和有机气溶胶是能见度下降最重要的贡献者,其次为黑碳气溶胶.    

8.  南京北郊冬季霾天PM2.5水溶性离子的污染特征与消光作用研究  被引次数:5
   周瑶瑶  马嫣  郑军  崔芬萍  王荔《环境科学》,2015年第36卷第6期
   为了探讨霾天下大气细颗粒物(PM2.5)中水溶性离子的污染特征及其对大气消光的影响,在2013年1月25日至2月3日于南京北郊进行了 PM2.5连续在线监测.利用颗粒物-液体转换采集系统(PILS)连续采集水溶性样品,与离子色谱联用分析了其中 SO2-4、 NO -3、 NH +4、 Cl -、 Na +、 K +、 Mg2+和 Ca2+的含量;同时采用扫描电迁移率粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)测量细粒子的粒径谱分布;采用三波长光声黑碳光度计(PASS-3)实时在线测量细粒子的散射和吸收消光系数;并实时监测痕量气体浓度.结果表明,观测期间霾与非霾天 PM2.5中水溶性离子的总质量浓度分别为70.3μg?m -3和22.9μg?m -3;二次吸湿性组分 SO2-4、 NO -3和 NH +4为主要的污染离子.霾天有利于 SO2和 NOx 向 SO2-4和 NO -3的转化,尤其是NOx 的氧化.运用多元线性回归统计方法,建立了 PM2.5干消光系数与气溶胶化学成分之间的经验公式,发现 NH4 NO3对南京冬季消光的贡献最大,其次为(NH4)2 SO4、有机碳(OC)和元素碳(EC).两次重污染事件中,污染前体物的一次排放和二次转化的增加分别是造成离子浓度升高的主要原因.    

9.  利用微脉冲激光雷达分析上海地区一次灰霾过程  被引次数:12
   潘鹄  耿福海  陈勇航  贺千山  张华  亢燕铭  毛晓琴  王洪强《环境科学学报》,2010年第30卷第11期
   通过分析2008年6月至2009年5月期间浦东新区灰霾天气出现的特征,并以2008年12月19日至2008年12月21日一次典型的灰霾天气过程为例,利用激光雷达(Light laser detection and ranging,简称Lidar)数据资料反演得到气溶胶消光系数及其强度图和廓线图,结合地面气象数据和气溶胶观测资料,分析了此次灰霾天气形成的原因.一年的观测资料表明,上海地区冬季和春季易产生灰霾天气,冬季出现重度霾最多,秋季和夏季灰霾天气较少.较弱的太阳辐射以及静风、小风是导致灰霾天气发生的重要原因,且高湿度的霾天气对能见度影响更大.大气边界层(以下简称边界层)高度变化决定着灰霾天气发生的强度,当边界层高度在1km左右时,易发生轻微霾天气,当边界层高度降至600m左右时,易发生中度、重度霾天气,而太阳辐射强度变化决定着边界层高度的变化.轻微霾天气下,大气气溶胶垂直分布最强消光值约为015km-1,而重霾天气下可达0.30km-1以上.本次霾过程还受地面颗粒物排放的影响,主要是PM1和PM2.5,且在消光作用中散射性气溶胶的贡献大于吸收性气溶胶.轻微霾天气下PM2.5 浓度为50μg·m-3,黑碳浓度为5000ng·m-3,浊度为200Mm-1,而重度霾时则分别达到200μg·m-3、24000 ng·m-3和1400Mm-1.随着此次霾的出现,整层大气气溶胶光学厚度(AOD,550nm)不断增加,在重度霾时达到0.6左右,Angstrom指数在重度霾时显著降低,表明有大颗粒物导入,说明此次重度霾天气的发生还与气溶胶的输送有关.    

10.  沈阳一次雾霾天气颗粒物浓度及光学特征变化  
   赵胡笳  马雁军  王扬锋  朱轶明《中国环境科学》,2015年第35卷第5期
   利用2011年10月17~22日连续在线观测沈阳地区大气能见度、颗粒物质量浓度ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)、以及通过太阳光度计测量数据反演得到的气溶胶光学厚度、Angstrom波长指数、气溶胶粒子谱分布数据,结合相对湿度、风速、温度等气象资料,分析了2011 年秋季沈阳一次雾霾天气过程中能见度与颗粒物质量浓度及气溶胶光学特征变化.结果表明:相对温度偏高、小风天气以及颗粒物质量浓度累积是造成沈阳能见度下降、引发雾霾天气的主要因素;雾霾期间细粒子所占比例较高,ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)平均值分别为138.8、103.3、94.9μg/m3,比雾霾过程前均增加约2倍左右,PM2.5/PM10和PM1.0/PM10分别为74.7%和68.6%;当RH0.90),RH >80%时, 能见度与颗粒物浓度间的相关性减弱;雾霾期间气溶胶光学厚度明显增加,雾霾前气溶胶光学厚度和Angstrom波长指数平均值分别为0.82和0.94,雾霾期间气溶胶光学厚度和Angstrom波长指数平均值分别为1.42和1.25;雾霾天气过程中,细模态粒子的峰值浓度约是雾霾前细粒子浓度的2倍,说明沈阳地区大气污染物以细粒子为主,进而影响气溶胶光学特征发生变化.    

11.  粤港细粒子(PM2.5)污染导致能见度下降与灰霾天气形成的研究  被引次数:16
   吴兑  刘啟汉  梁延刚  毕雪岩  李菲  谭浩波  廖碧婷  陈慧忠《环境科学学报》,2012年第32卷第11期
   为了研究珠三角地区细粒子气溶胶的环境效应,使用粤港地区长期气象资料和珠三角大气成分站网高分辨率资料,结合卫星遥感AOD结果,分析了珠三角地区由于细粒子(PM2.5)污染导致能见度下降与形成灰霾天气的长期变化趋势.结果表明,近年来珠江三角洲地区的气溶胶污染日趋严重,气溶胶云一年四季都可以出现,且长期稳定存在,重污染区位于珠江口以西的珠江三角洲西侧.灰霾天气主要出现在10月至次年4月.灰霾导致能见度恶化.自20世纪80年代初开始,该地区的能见度急剧恶化,灰霾天气显著增加,其中有3次大的波动,分别代表珠江三角洲经济发展相伴随的粗颗粒气溶胶污染、硫酸盐+粗颗粒气溶胶污染、光化学过程的细粒子+硫酸盐和粗颗粒气溶胶的复合污染时期.雾和轻雾造成的低能见度的长期变化趋势,没有由于人类活动影响或经济发展影响带来趋势性变化,其波动主要反映了气候波动固有的年际和年代际变化.珠江三角洲能见度的恶化主要与细粒子关系比较大,PM10有一半年份的年均值超过国家二级标准的年均值限值(70μg·m-3),而PM2.5年均值全部年份都超过国家二级标准的年均值限值(35μg·m-3),尤其是有些年份的年均值浓度超过标准限值的2倍,细粒子浓度甚高.另外,近年PM2.5占PM10的比重非常高,可达51%~79%,黑碳气溶胶浓度非常高,月均值达到5.0~9.1μg·m-3.和20余年前的资料相比较,细粒子在气溶胶中的比重有明显增加.因而在目前粤港地区的气溶胶污染中,主要是细粒子的污染,尤其是黑碳气溶胶污染严重.    

12.  浙江金华秋季干气溶胶中主要化学组分的消光贡献解析  
   陈雯廷  黄晓锋  田旭东  朱乔  兰紫娟  何凌燕《环境科学学报》,2017年第37卷第11期
   造成雾霾事件的主要原因是高浓度的大气细颗粒物污染.为了深入研究大气细颗粒物的消光来源,本研究采用高时间分辨率气溶胶观测仪器获得了浙江金华秋季PM1主要化学组分浓度及干气溶胶吸收系数和散射系数演变情况.结合有机气溶胶正矩阵因子解析模型(PMF)和多元线性回归方法,建立了拟合优度很高(R2=0.977)的细颗粒物中主要化学组分与干气溶胶消光系数间的定量关系模型.结果表明,观测期间消光贡献最大的是硫酸铵,贡献率为35.1%;其次是硝酸铵,贡献率为26.7%;二次有机气溶胶(SOA)、生物质燃烧有机气溶胶(BBOA)、黑碳(BC)及氯化铵的消光贡献率分别为14.3%、11.2%、8.7%、4.0%.在一些特定污染时段,BBOA具有最大的消光贡献,是导致此时大气能见度大幅度衰减的首要因子.    

13.  北京2011年10月连续灰霾过程的特征与成因初探  被引次数:10
   高健  张岳翀  王淑兰  柴发合  陈义珍《环境科学研究》,2012年第25卷第11期
   选择2011年北京地区灰霾典型发生月-10月,利用在中国环境科学研究院监测的(Ψ)(SO2)、(Ψ)(O3)、(Ψ)(NO2)、(Ψ)(CO)、ρ(PM10)、ρ(PM2.5)、ρ(BC)等数据,对该地区秋季典型灰霾过程特征及成因进行了研究.在观测期间51.5%的时间内出现了灰霾,其中13.6%属于重度灰霾.对灰霾期间污染物时间分布特征的分析表明:在灰霾过程中ρ(PM1)、ρ(PM2.5)、ρ(PM10)及ρ(BC)较各自月均值的升幅均大于20%,ρ(PM1)/ρ(PM2.5)(78.7%)也明显增大.大气能见度的降低与细颗粒物及亚微米颗粒物有直接关系.对观测期间的气象因素、气体污染物时间序列和颗粒物浓度累积特征的研究表明,10月连续灰霾过程的成因可能是该月频繁出现的鞍型场静稳天气及北京周边地区存在的基数较大的细颗粒物排放源所致.    

14.  南京地区秋季灰霾天气特征及其水溶性离子分析  被引次数:2
   葛顺  汤莉莉  秦玮  丁铭  陈敏东《环境科学与技术》,2015年第2期
   文章利用PM2.5颗粒物质量浓度分析仪(MET ONE 1020)、气溶胶激光雷达(Sigma MPL-4B)、气溶胶在线离子分析仪(Marga1S)于2013年秋季在江苏省环境监测中心6楼顶对大气细粒子(PM2.5)、大气边界层、气溶胶化学组分的进行系统的同步观测与分析,研究表明2013年11月期间,南京发生5次霾污染过程,当月PM2.5日均值浓度高达192.4μg/m3;灰霾期间,能见度较低,近地面出现消光层,大部分时间段消光值大于0.4;灰霾期间无秸秆焚烧事件,K+浓度的可能来源于土壤,SO42-、NO3-、NH4+3种离子均值占比分别为27.8%、38.1%、21.6%;此外,南京地区存在严重的二次转化,灰霾期间SOR和NOR值分别为0.388和0.276,移动源对大气污染的贡献也越来越显著,[NO3-]/[SO42-]月均值为1.28;后向轨迹推算表明,第1次、第3次、第5次灰霾期间大气污染物主要来自于南京的西北方向,第2次和第4次灰霾期间大气污染主要来自于南京的西南方向。    

15.  北京冬季雾霾天气下颗粒物及其化学组分的粒径分布特征研究  被引次数:4
   常清  杨复沫  李兴华  曹阳  王欢博  田密《环境科学学报》,2015年第35卷第2期
   为认识雾霾天气下颗粒物及其化学组分的粒径分布特征,利用13级低压撞击采样器采集北京城区冬季一次典型雾霾天气下的大气颗粒物,采用离子色谱和元素碳/有机碳分析仪分析了PM10中不同粒径的水溶性离子、元素碳和有机碳组分,获得了颗粒物及其化学成分的粒径分布特征.结果表明,不同天气下颗粒物质量浓度大小为:雾霾>多云>雪天>晴天,4种天气下PM2.5/PM10均大于74%,说明冬季污染主要是由细颗粒物污染引起.SO2-4、NO-3、NH+4、Cl-、Ca2+是最主要的水溶性离子.SO2-4、NO-3、NH+4在0.76μm出现单峰;Ca2+和Mg2+在0.31和5.13~8.09μm出现双峰,主要分布在粗模态;Cl-和K+在0.76和5.13μm出现双峰,主要分布在细粒径段.OC、EC也富集于细粒子,显单峰结构.随污染程度增加,二次无机离子及碳组分浓度均显著增加,SO2、NO2的表观转化率(SOR、NOR)以及OC/EC在灰霾期间都远远高于二级良,可见二次无机源及有机源是污染的主要来源.在空气流动性差的灰霾持续期,机动车尾气排放的EC等一次污染物贡献增加.分析NO-3/SO2-4的粒径分布发现,机动车尾气对爱根核模态及凝结模态的亚微米模态(<1μm)贡献大于固定源,机动车尾气排放对大气污染的贡献已十分凸显.此外,燃煤污染的区域输送对污染的形成也有重要贡献,重污染期间土壤扬尘的贡献较小.    

16.  北京典型污染过程PM2.5的特性和来源  被引次数:1
   王志娟  韩力慧  陈旭锋  程水源  李悦  田川  谢慧《安全与环境学报》,2012年第12卷第5期
   通过采集北京2010年12月—2011年3月冬春季节大气细颗粒物PM2.5样品,分析了冬春季典型污染时段灰霾和沙尘期间大气细颗粒物PM2.5的质量浓度和其中元素、水溶性离子、有机组分OC和EC特性,及其季节变化和来源.结果表明,北京灰霾和沙尘期间PM2.5日均质量浓度分别高达301.8 μg/m3和284.8 μg/m3,是美国EPA PM2.5日均质量浓度限值(35 μg/m3)的8.62倍和8.14倍.灰霾时段,人为污染元素(S、Cu、Zn、As、Se、Cd、Sb、Pb)、二次无机离子(NH4+、NO3-、SO42-)和二次有机碳(SOC)的质量浓度均高于沙尘天气和非污染天气.沙尘天气时地壳元素(Na、Mg、Al、Ca、Fe等)的质量浓度高于灰霾天气和非污染天气.北京冬春季节PM2.5主要来源于燃煤和工业过程、二次转化、地面扬尘、机动车尾气和生物质燃烧.灰霾污染时段二次转化贡献率较高,沙尘污染时段地面扬尘贡献率较高.    

17.  西安冬季非灰霾天与灰霾天PM2.5中水溶性有机氮污染特征比较  
   程玉婷  王格慧  孙涛  成春雷  孟静静  任艳芹  李建军《环境科学》,2014年第35卷第7期
   2012年12月4~13日在西安市运用大流量大气采样器进行每小时1次PM2.5样品采集,对其进行有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、水溶性总氮(WSTN)、水溶性有机氮(WSON)以及无机离子分析,探讨其浓度、组成、时间变化特征和来源.结果表明,采样期间西安PM2.5中WSON小时平均浓度为(12±9.4)μg·m-3,最高达31μg·m-3,平均占水溶性总氮(WSTN)的47%±9.8%,而无机氮NH+4-N和NO-3-N则平均分别占WSTN的29%±8.5%和23%±8.1%.WSON∶WSOC(N∶C)质量比值范围为0.04~0.65,平均为0.31±0.13.在非灰霾天(能见度>10 km)、轻霾天(5 km<能见度<10 km)和重霾天(能见度<5 km),WSON分别为(1.6±0.9)、(6.5±3.9)和(23±4.7)μg·m-3.WSOC/OC质量比值在整个观测期间无明显变化,但是WSON/WSOC(N∶C)质量比值从非灰霾天、轻霾天到重霾天呈逐步增大趋势,其均值分别为0.2±0.1、0.3±0.1和0.4±0.1,与颗粒物碱度减弱酸度增强相一致.此外,整个采样期间WSON与NH+4、SO2-4和NO-3呈强线性相关(R2>0.80),阴阳离子当量平衡进一步显示:WSON与颗粒物中和度呈负相关(R2=0.53).研究结果表明,大气中有机胺等气态水溶性含氮有机物可通过酸碱中和与颗粒相酸性物质反应,由气相转移到颗粒相,并且重霾天低温、高湿和静风的气象条件有利于这种酸碱中和导致的气固相转化,促使更多的WSON生成.    

18.  太原市冬季灰霾期间大气细颗粒物化学成分特征  被引次数:6
   曹玲娴 耿 红 姚晨婷 赵 磊 段鹏丽 宣莹莹 李 红《中国环境科学》,2014年第4期
   研究了太原市灰霾发生期间大气PM2.5质量浓度和化学成分变化规律.采样时间为2011年12月27日16:00~2012年1月3日04:00,使用TH-150C中流量大气PM2.5采样器(采样膜为直径90mm的石英纤维滤膜)在山西大学环境科学研究所5层楼顶每隔4h采样一次,得到灰霾样品34个,非灰霾样品5个.采样期间对大气PM2.5质量浓度进行实时监测.结果表明:灰霾期间(初起、进展、鼎盛、减弱4个阶段)大气PM2.5平均浓度达(692±272)μg/m3,是非灰霾期间(即灰霾消失阶段)(54±12)μg/m3的12.8倍;在灰霾发生期间,大气PM2.5中Hg、Pb、As等重金属污染物、OC以及水溶性无机离子SO42-、NO3-、NH4+、K+、Cl-、F-浓度呈现相似的变化趋势,即在灰霾初起、进展阶段不断增加,在灰霾鼎盛期达到最大值,随后随着灰霾的减弱和消失而不断下降,最终降到一个较低的水平;而与燃煤关系不大的Zn元素、Ca2+、Mg2+等在灰霾各个时期浓度变化较小.以上结果说明冬季灰霾天气使太原市大气PM2.5浓度显著上升,并增加PM2.5中重金属、有机物和二次气溶胶含量,使其化学成分发生改变,同时也反映了冬季燃煤和生物质燃烧对太原市大气PM2.5的化学组成影响大于交通源和土壤扬尘.    

19.  春节期间西安城区碳气溶胶污染特征研究  被引次数:10
   周变红  张承中  王格慧《环境科学》,2013年第34卷第2期
   采用美国R&P公司TEOM-1400a大气颗粒物监测仪器及其8通道采样系统(ACCU),在2011年春节期间实时监测和分8个时段采集了西安城区的PM2.5样品.研究了春节期间西安城区大气中PM2.5的碳气溶胶污染特征.目的是阐明2011年春节期间燃放烟花爆竹时,西安城区大气中细颗粒PM2.5的质量浓度、元素碳(EC)、有机碳(OC)及水溶性有机碳(WSOC)的浓度分布特征,探讨了其污染来源.结果表明,除夕00:00~02:59为污染浓度最大时段,PM2.530 min平均浓度在01:00时刻达到最大值1 514.8μg·m-3,其碳组分OC、EC、WSOC、非水溶性有机碳(WIOC)分别为123.3、18.6、66.7和56.6μg·m-3,高于春节期间的其他正常时段1.7倍、1.2倍、1.4倍和2.2倍.碳气溶胶组分WSOC与OC、EC相关性分析表明春节烟火期间含碳物质更多的来自于烟花爆竹燃放,但其对烟火时段的气溶胶的贡献较小,仅为9.4%.    

20.  西安市春季大气细粒子的质量浓度及其水溶性组分的特征  被引次数:25
   沈振兴  李丽珍  杜娜  张婷  曹军骥  李旭祥  朱崇书《生态环境》,2007年第16卷第4期
   为了探讨西安市春季大气细粒污染物的污染水平及水溶性组分的特征及来源,2005年3—5月对西安大气PM2.5进行了观测,并应用离子色谱对其中的水溶性组分进行了分析。结果显示,西安市春季大气PM2.5的质量浓度为159.9μg·m-3。分析的11种阴阳离子(Na 、NH4 、K 、Mg2 、Ca2 、F-、Cl-、Br-、NO2-、NO3-和SO42-)质量浓度占PM2.5的30%,表明水溶性组分是大气细粒子的主要组成之一。NH4 、SO42-和NO3-为水溶性离子的主要组分,其平均质量浓度分别为6.6、20.1和7.6μg·m-3,在总水溶性离子中的百分比分别为12.4%、47.4%和16.9%,SO42-和NO3-质量浓度与能见度有较好的负相关性,表明细粒子中二次气溶胶组分对能见度有显著的影响。阴阳离子的平衡和pH值的测定结果显示,西安市大气细粒子污染物为弱酸性。离子间的相关性分析揭示水溶性离子在颗粒物中主要结合方式为(NH4)2SO4、NH4HSO4、NH4NO3、KHSO4和K2SO4。Mg2 和Ca2 的相关性也较好,其摩尔比率为0.07,小于中国北方沙漠和黄土的平均值(0.15),揭示二次扬尘和建筑扬尘等过程对Ca2 的质量浓度影响较大。计算的NO3-/SO42-质量浓度比值的均值为0.38,说明固定排放源(燃煤)对细粒子中水溶性组分的贡献大于移动排放源(机动车)。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号