首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
我国环境中有机污染物分析方法及痕量富集技术的进展   总被引:10,自引:8,他引:10  
综述了我国环境中有机污染物的分析方法和痕量富集技术,介绍了吹扫-捕集法、固相微萃取技术、固相萃取技术、半渗透膜采样技术与分析仪器联用在有机污染物测定中的应用情况。  相似文献   

2.
应用新型半透膜采样技术(SPMD),监测某城市污水处理流程中8个点污水中两类难降解有毒有机污染物多氯联苯(PCB)和多环芳烃(PAH),同时同地采集水样,气相色谱质谱联机,选择性离子扫描方式对各PCB异构体和PAH定性定量。与水样液液萃取相比,SPMD采样技术显著提高了分析的准确度。根据测定的采样器中污染物浓度,推算采样期间该点污水中的平均浓度,与瞬间水样分析结果符合程度较好。半透膜采样方法可用于污水处理工艺流程中多氯联苯和多环芳烃污染物的定性和半定量监测  相似文献   

3.
半透膜采样技术是一种可原位、连续、动态监测水环境中非极性、弱极性有机污染物的被动采样技术,已在国内外发展20余年,但在环境监测中使用很少。从半透膜被动采样特点、采样器构造入手,着重对应用该技术的环节进行剖析,同时涉及被动采样结果及其评价方法。最后以多环芳烃(PAHs)为例,综述了近年来SPMD技术监控水体中非极性、弱极性有机污染物的常用分析技术及其发展。  相似文献   

4.
利用Triolein半渗透膜采样技术测定洋河水中的优先污染物   总被引:6,自引:0,他引:6  
应用Triolein半渗透膜采样器采集了河北洋河宣化至官厅水库河段水样,根据测定采样器中多氯联苯污染物(PCBs)及其它优先污染物浓度,可以估算这些污染物在河段水体中的平均浓度。将结果与同时同地采集的水样,经萃取浓缩后分析得到的结果比较,发现对于不同类型污染物,二者符合程度不同。本研究证明半渗透膜被动采样技术可用于水中多氯联苯等难降解污染物的定量监测,有可能在我国的优先污染物监测工作中发挥作用  相似文献   

5.
利用 Triolein 半渗透膜采样技术 ( Triolein SPMD)采集了淮河信阳、淮南断面水样 ,测定了采样器中多氯联苯、多环芳烃、取代苯等有毒有机污染物浓度。污染物在 SPMD酯中高浓度富集 ,使其定性和定量更加容易和准确。根据SPMD酯 水分配平衡理论 ,进一步估算得到目标污染物在水中的平均浓度。本研究证明 Triolein SPMD技术可用于水中多氯联苯、多环芳烃、取代苯等污染物的采集和定量分析 ,可在我国的优先污染物监测、控制工作中发挥作用。  相似文献   

6.
介绍了我国水环境有机物分析中常用的前处理技术,包括液液萃取、树脂吸附、固相萃取、固相微萃取、液膜萃取、半透膜被动采样、顶空、吹扫-捕集等,归纳了各种方法的原理、应用及优缺点,并对环境中有机污染物前处理技术的发展方向进行了展望。  相似文献   

7.
固定化微生物处理有机污染物的研究进展   总被引:4,自引:0,他引:4  
胡燕荣  于雪峰 《干旱环境监测》2002,16(4):195-196,F004
综述了近年来固定化微生物技术用于有机污染物治理中的最新进展,这些有机污染物包括难降解有机污染物(酚类、芳香烃类等)及其它化合物(DMP、甲硫醇恶臭气体、制药废水等)。此外,对藻类固定化技术作了简介,并对固定化技术的应用前景及存在问题进行了评述。  相似文献   

8.
大气中半挥发性有机污染物的监测研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了大气中半挥发性有机污染物的采样方法和气/固相分配模型,综述了索氏提取、超声波萃取、超临界流体萃取、微波萃取、固相微萃取等样品预处理方法,以及直接进样热解析和其他仪器分析方法,对大气中半挥发性有机污染物的监测研究进展作了展望。  相似文献   

9.
通过建立和完善空气中有机污染物的分析方法,对徐州市区空气中的有机污染物开展了全面详细的探查,弄清了市区空气中有机污染物的污染现状及时空变化规律,填补了徐州市空气监测数据中的有机污染物的空白,为开展空气有机污染物的调查和监测奠定了一定的基础。  相似文献   

10.
介绍了水体沉积物中有毒有机污染物监测的预处理技术,重点评述了我国水体沉积物中主要有毒有机污染物多环芳烃、多氯联苯和有机氯农药的监测研究现状,认为水体沉积物中有毒有机污染物研究领域今后发展的重点和方向是广泛开展国内主要河流、湖泊、海洋的监测研究和其在水体环境中的迁移及转化机理、生殖毒性以及污染消减与修复技术研究;加强新型预处理技术及其与大型仪器联用技术的研究;尽早建立水体沉积物中有毒有机污染物的监测方法标准及污染评价标准。  相似文献   

11.
Lipid-filled semipermeable membrane devices (SPMDs) are receiving increasing attention as passive, in situ samplers for the assessment of environmental pollutant exposure. Although SPMDs have been successfully used in a variety of field studies in surface waters, only a few studies have addressed their characteristics as groundwater samplers. In this study, the performance of the SPMDs for monitoring organic contaminants in groundwater was evaluated in a pilot field application in an area severely contaminated by chemical waste, especially by chlorinated hydrocarbons. The spatial distribution of hydrophobic groundwater contaminants was assessed using a combination of passive sampling with SPMDs and non-target semiquantitative GC-MS analysis. More than 100 contaminants were identified and semiquantitatively determined in SPMD samples. Along the 6 field sites under investigation, a large concentration gradient was observed, which confirms a very limited mobility of hydrophobic substances in dissolved form in the aquifer. The in situ extraction potential of the SPMD is limited by groundwater flow, when the exchange volume of well water during an exposure is lower than the SPMD clearance volume for the analytes. This study demonstrates that SPMDs present a useful tool for sampling and analyzing of groundwater polluted with complex mixtures of hydrophobic chemicals and provides guidance for further development of passive sampling technology for groundwater.  相似文献   

12.
The uptake rates of selected hydrophobic organic contaminants (HOCs) by semipermeable membrane devices (SPMDs)--a polyethylene layflat containing the lipid triolein--were investigated under natural conditions. SPMDs were exposed in three sampling sites (industrial, urban, and agricultural areas) in the Tajo River (Toledo, Spain) for 5, 11 and 20 d. The organochlorine compounds 4,4'-DDT, 4,4'-DDE, alpha-HCH, gamma-HCH, pentachlorobenzene, hexachlorobenzene, and polychlorinated biphenyls (PCBs), and the 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) were detected in the SPMDs deployed in the three sampling sites. A linear uptake rate was found for DDTs and for 4-Cl- and 5-Cl-substituted PCB congeners in all sampling sites. Concentrations of HCHs (80.3 ng g(-1) SPMD for alpha-HCH and 109 ng g(-1) SPMD for gamma-HCH after 20 d of exposure) increased according to a linear uptake rate in the SPMDs deployed in the sampling site located in the agricultural area. Likewise, a marked increase of total PAH concentration (up to 300 ng g(-1) SPMD after 20 d of exposure) was solely found in the sampling site situated near a thermoelectric power station. Examination of individual PAHs revealed that PAHs with log K(OW) between 4.2 and 5.7 displayed a linear uptake rate over the 20 d of exposure. Water concentrations (ng L(-1)) of HCB (0.80-2.48), lindane (1.30-11.5), 4,4'-DDT (0.61-2.02), 4,4'-DDE (6.89-11.6) and total PAHs (12.0-26.7) estimated by a linear uptake kinetic model were found to be high in comparison with other polluted aquatic systems, and similar to concentrations in other Spanish rivers. Our results suggest that SPMD kinetic uptake studies in the natural environment are recommended for identifying point-pollution sources, and that shorter times of SPMD exposure (approximately 1 week) are desirable to minimize one of the main problems of field SPMD deployment, i.e., the biofouling, which negatively affects the estimation of the dissolved HOC concentrations.  相似文献   

13.
In the study reported here semipermeable membrane devices (SPMDs) were used to sample 28 PAHs and 19 PCBs in the gas phase in 15 single-family houses located in an area where domestic wood burning is widespread. Eight of the households used wood burning appliances whereas the others used other systems for residential heating. Most of the studied compounds were found in the houses: the PAHs at levels that were similar to or slightly higher than published SPMD-sampled levels for background or urban sites in Sweden, and the PCBs at levels that were somewhat lower than those recently found in both indoor and outdoor urban locations. A principal component analysis revealed that wood-burning heating systems may contribute to PAHs in indoor air. The sources may be emissions indoors or penetration from outdoors. The convenience of SPMD technology facilitates its use for semi-quantitative screening and monitoring of various persistent organic compounds indoors in dwellings and working environments.  相似文献   

14.
The impact of anthropogenic pollutants on the marine ecosystem is related to the concentrations experienced by the biota in the seawater and the resulting concentration in the organism. Results from monitoring of pollutants in water samples provide snapshots that can be high or low depending on a wide range of variables. To provide more integrated information, semipermeable membrane devices, SPMDs, have been used to monitor different organic pollutants. In this survey, SPMDs were used to monitor organotin compounds in the marine environment. Time-integrated sampling using SPMDs and direct water sampling was carried out at six stations in the inner Oslofjord, Norway. The sample work-up procedure for both water and SPMDs was based on direct derivatisation using NaBEt4 and simultaneous extraction with an organic solvent. Analysis was performed using a gas chromatograph equipped with an atomic emission detector. The results show that SPMDs do accumulate organotin compounds from the water phase. Both tributyl- (TBT) and dibutyltin were detected in all of the analysed membranes while no monobutyltin was found. Levels found in SPMDs range from < 1 to 220 ng Sn SPMD(-1). Water concentrations range from 0.4 to 10 ng Sn L(-1). An investigation of relative levels of TBT showed a similar concentration gradient in the inner Oslofjord using either direct water sampling or passive sampling by SPMDs. As the membranes are able to accumulate the organotins from the water it will be possible to locate lower concentrations than with direct analyses of water samples.  相似文献   

15.
Semipermeable membrane devices (SPMDs) were deployed in the Columbia Slough, near Portland, Oregon, on three separate occasions to measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds (OCs) in the slough. Concentrations of PAHs and OCs in SPMDs showed spatial and seasonal differences among sites and indicated that unusually high flows in the spring of 2006 diluted the concentrations of many of the target contaminants. However, the same PAHs - pyrene, fluoranthene, and the alkylated homologues of phenanthrene, anthracene, and fluorene - and OCs - polychlorinated biphenyls, pentachloroanisole, chlorpyrifos, dieldrin, and the metabolites of dichlorodiphenyltrichloroethane (DDT) - predominated throughout the system during all three deployment periods. The data suggest that storm washoff may be a predominant source of PAHs in the slough but that OCs are ubiquitous, entering the slough by a variety of pathways. Comparison of SPMDs deployed on the stream bed with SPMDs deployed in the overlying water column suggests that even for the very hydrophobic compounds investigated, bed sediments may not be a predominant source in this system. Perdeuterated phenanthrene (phenanthrene-d (10)). spiked at a rate of 2 microg per SPMD, was shown to be a reliable performance reference compound (PRC) under the conditions of these deployments. Post-deployment concentrations of the PRC revealed differences in sampling conditions among sites and between seasons, but indicate that for SPMDs deployed throughout the main slough channel, differences in sampling rates were small enough to make site-to-site comparisons of SPMD concentrations straightforward.  相似文献   

16.
Data are presented for polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyls ethers (PBDEs) and selected organochlorine compounds (OCs) in passive air samplers (PAS) along a rural/remote latitudinal transect from southern UK to northern Norway during 2002-2004. This study is part of an ongoing campaign, using semi-permeable membrane devices (SPMDs) as PAS over two year intervals since 1994. Data for PCBs, selected OCs and PBDEs are compared with that from previous campaigns. Absolute sequestered amounts of selected PCB congeners have decreased in a first order fashion between 1994-2004, with an average atmospheric clearance rate of 4.1 +/- 0.6 years and continue to fractionate with latitude. HCB has also declined between 1998-2004, with a clearance rate of 6 +/- 2.4 years. Data on DDT and its breakdown products indicate little fresh release in Europe. Comparison of PBDEs in 2000-02 and 2002-04 indicates site differences, generally with increases at UK sites and decreases in Norway. BDE-28, 47 and 49 decreased with increasing latitude (p < 0.04), while the other congeners did not show any significant latitudinal dependence. Transect data are presented for PAHs the first time. Three- and 4-ringed compounds dominated the mixture present in the SPMD. The PAH composition of the SPMDs at site 3 was compared to the average composition taken by active sampling at the same site. SPMD performance for sampling PAHs leaves many uncertainties, but they can be successfully used to semiquantitatively detect PAHs in the atmosphere. Fluorene and phenanthrene increased with latitude (p > 0.05), while 1-methylphenanthere, fluoranthene, benzo[b]fluoranthene and indeno[123-cd]pyrene decreased. Results are discussed in terms of sources, long-range atmospheric transport, global fractionation and clearance processes.  相似文献   

17.
Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2–5 μg/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here.  相似文献   

18.
In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l?1 for PAHs, from 20.9 to 120.9 pg l?1 for PCBs and from 0.2 to 36.9 ng l?1 for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15–36.9 ng l?1) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03–0.55 ng l?1). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号