首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 77 毫秒
1.
We utilized landscape and breeding bird assemblage data from three Breeding Bird Survey (BBS) routes sampled from 1965–1995 to develop and test a grassland integrity index (GII) in a mixed-grass prairie area of Oklahoma. The overall study region is extensively fragmented from long-term agricultural activity, and native habitat remnants have been degraded by recent encroachment of woody vegetation, namely eastern redcedar (Juniperus virginiana L.). The 50 individual bird survey points along the BBS routes, known as stops, were used as sample sites. Our process first focused on developing a grassland disturbance index (GDI) as a measure of cumulative landscape disturbances for these sites. The GDI was based on five key landscape variables identified in an earlier species-level study of long-term avian community dynamics: total tree, shrub, and herbaceous vegetation cover indices, overall mean landscape patch size, and grassland patch core size. The GII was then developed based on breeding bird assemblage data. Assemblages were based on commonly used response guilds reflective of five avian life history parameters: foraging mode/location, nesting location, habitat specificity, migratory pattern, and dietary guild. We tested the response of 78 candidate assemblage metrics to the GDI, and eliminated those with no or poor response or with high correlations (redundant), resulting in 13 metrics for use in the final index. Individual metric scores were scaled to fall between 0 and 10, and the cumulative index to range from 0 to 100. Although broader application and refinement are possible, the avian-based GII has an advantage over labor-intensive, habitat-based monitoring in that the GII is derived from readily available long-term BBS data. Therefore, the GII shows promise as an inexpensive tool that could easily be applied over other areas to monitor changes in regional grassland conditions.  相似文献   

2.
Due to the complexity of factors that influence species density on a large geographical scale, the effectiveness of the species distribution model (SDM) is still debatable. That is why the buffer zone (the area within 100 m from the outside edge of the patch), the core, i.e. (patches excluding the 100 m buffer zone from the patch’s edge) and patch shape are explored in this study to see how they affect the density of habitat specialist and generalist bird species. Two sets of generalised additive models were generated separately for each of the four bird species: One set of models contained landscape configuration metrics as an additional predictor variable, and the other did not. The results showed that models including the core, the buffer zone and the shape of patches turned out to be definitely better than models without them. Specialist species, the Corn bunting and the Wood nuthatch, are more likely to occur in the core of the preferred patches, and they choose those of a simple shape; while generalist species, the Whinchat and the Tree pipit, are more probable to be present in the buffer zone of a more complicated shape. Thus, the results clearly show that specific landscape configuration models can improve the predictive power of SDMs and can be used as an effective tool for predicting species density and functional bird diversity (specialist and generalist). Furthermore, from the applied ecology perspective, detailed landscape configuration metrics can be considered as a surrogate of elusive habitat conditions.  相似文献   

3.
Using a new set of landscape indicator data generated by the U.S.EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect finer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.  相似文献   

4.
Characterizing the forest fragmentation of Canada’s national parks   总被引:1,自引:0,他引:1  
Characterizing the amount and configuration of forests can provide insights into habitat quality, biodiversity, and land use. The establishment of protected areas can be a mechanism for maintaining large, contiguous areas of forests, and the loss and fragmentation of forest habitat is a potential threat to Canada’s national park system. Using the Earth Observation for Sustainable Development of Forests (EOSD) land cover product (EOSD LC 2000), we characterize the circa 2000 forest patterns in 26 of Canada’s national parks and compare these to forest patterns in the ecological units surrounding these parks, referred to as the greater park ecosystem (GPE). Five landscape pattern metrics were analyzed: number of forest patches, mean forest patch size (hectare), standard deviation of forest patch size (hectare), mean forest patch perimeter-to-area ratio (meters per hectare), and edge density of forest patches (meters per hectare). An assumption is often made that forests within park boundaries are less fragmented than the surrounding GPE, as indicated by fewer forest patches, a larger mean forest patch size, less variability in forest patch size, a lower perimeter-to-area ratio, and lower forest edge density. Of the 26 national parks we analyzed, 58% had significantly fewer patches, 46% had a significantly larger mean forest patch size (23% were not significantly different), and 46% had a significantly smaller standard deviation of forest patch size (31% were not significantly different), relative to their GPEs. For forest patch perimeter-to-area ratio and forest edge density, equal proportions of parks had values that were significantly larger or smaller than their respective GPEs and no clear trend emerged. In summary, all the national parks we analyzed, with the exception of the Georgian Bay Islands, were found to be significantly different from their corresponding GPE for at least one of the five metrics assessed, and 50% of the 26 parks were significantly different from their respective GPEs for all of the metrics assessed. The EOSD LC 2000 provides a heretofore unavailable dataset for characterizing broad trends in forest fragmentation in Canada’s national parks and in their surrounding GPEs. The interpretation of forest fragmentation metrics must be guided by the underlying land cover context, as many forested ecosystems in Canada are naturally fragmented due to wetlands and topography. Furthermore, interpretation must also consider the management context, as some parks are designed to preserve fragmented habitats. An analysis of forest pattern such as that described herein provides a baseline, from which changes in fragmentation patterns over time could be monitored, enabled by earth observation data.  相似文献   

5.
This study was aimed at analyzing and interpreting changes in landscape pattern and connectivity in the Urla district, Turkey using core landscape metrics based on a 42-year data derived from 1963 CORONA and 2005 ASTER satellite images and ten 1/25,000 topographical maps (1963–2005). The district represents a distinctive example of re-emerged suburbanization in the Izmir metropolitan area. In order to explore landscape characteristics of the study area, nine landscape composition and configuration metrics were chosen as follows: class area, percentage of landscape, number of patches, patch density, largest patch index, landscape shape index, mean patch size, perimeter area fractal dimension, and connectance index. The landscape configurations in the Urla district changed significantly by 2005 in that the process of (sub-)urbanization in the study area evolved from a rural, monocentric urban typology to a more suburban, polycentric morphology. Agricultural, maquis-phrygana, and forest areas decreased, while the built-up, olive plantation and phrygana areas increased. There was nearly a fivefold increase in the built-up areas during the study period, and the connectivity of the natural landscape declined. To prevent further fragmentation, it is important to keep the existing natural land cover types and agricultural areas intact. More importantly, a sustainable development scenario is required that contains a green infrastructure, or an ecological network planning for conservation and rehabilitation of the vital natural resources in the study area.  相似文献   

6.
A majority of the research on forest fragmentation is primarily focused on animal groups rather than on tree communities because of the complex structural and functional behavior of the latter. In this study, we show that forest fragmentation provokes surprisingly rapid and profound alterations in tropical tree community. We examine forest fragments in the tropical region using high-resolution satellite imagery taken between 1973 and 2004 in the Southern Western Ghats (India) in relation to landscape patterns and phytosociological datasets. We have distinguished fragmentation in six categories—interior, perforated, edge, transitional, patch, and undetermined—around each forested pixel. Furthermore, we have characterized each of the fragment class in the evergreen and semi-evergreen forest in terms of its species composition and richness, its species similarity and abundance, and its regeneration status. Different landscape metrics have been used to infer patterns of land-use changes. Contiguous patches of >1,000 ha covered 90% of evergreen forest in 1973 with less porosity and minimal plantation and anthropogenic pressures; whereas in 2004, the area had 67% forest coverage and a high level of porosity, possibly due to Ochlandra spread and increased plantations which resulted in the loss of such contiguous patches. Results highlight the importance of landscape metrics in monitoring land-cover change over time. Our main conclusion was to develop an approach, which combines information regarding land cover, degree of fragmentation, and phytosociological inputs, to conserve and prioritize tropical ecosystems.  相似文献   

7.
As part of the U.S. 2003 National Report on Sustainable Forests, four metrics of forest fragmentation--patch size, edge amount, inter-patch distance, and patch contrast--were measured within 137744 non-overlapping 5625 ha analysis units on land-cover maps derived from satellite imagery for the 48 conterminous States. The perimeter of a typical forest patch is about 100 m from the perimeter of its nearest neighbor, except when there is not much forest, in which case that distance is 200 to 300 m. A typical analysis unit has from 10 to 40% as much forest edge as it could possibly have, given the amount of forest present. Most analysis units contain a large number of patches that are less than one hectare in size, and about 10% contain one or more 2000 to 5000 ha patches. Forest often defines the background landscape, and patch contrast is generally either very high or very low in eastern regions and intermediate in western regions. Many research needs were identified by this experimental analysis of available data and metrics.  相似文献   

8.
Protected areas (PAs) represent real cornerstones in the conservation of biodiversity and natural habitats. Their protection must be a priority today for each society. The enhanced socio-economic requirements increase the pressure upon protected areas, and the effect can result in a reduction of biodiversity. The aim of this study is to quantify forest fragmentation in the pre- (1986–2002) and post-establishment (2002–2016) periods, inside and around (buffer 1, buffer 2 and buffer 3) Apuseni Natural Park (ANP), Romania, using a series of classified Landsat satellite images and six landscape metrics. The results show that forest fragmentation occurred both in the pre- and post-establishment periods, inside and around ANP. Inside the park, the deforestation rate increased four times, from 0.03% year?1 in the pre-establishment period to 0.14% year?1 in the post-establishment period. Around the park, the deforestation rate decreased from 0.31% year?1 in the pre-establishment period (buffer 1) to 0.10% year?1 in the post-establishment period (buffer 1). Forest fragmentation resulted in an increase in the patch density and edge density, and a decrease in the total core area and mean patch size leading to isolation of patches and fragmentation of landscape, especially in ANP in the post-establishment period. Several measures can be taken in order to stop forest fragmentation inside and around ANP, including the education of buffer-zone communities, reforestation, enforcement of park regulations, and forest legislation.  相似文献   

9.
Socioeconomic forces are not only among the main drivers of landscape dynamics; they are also influenced by landscape patterns. Landscape structure and functions are closely related to natural and social factors. The objective of this study was to investigate the relationships among some human-related factors and landscape ecological metrics as landscape pattern indicators and to identify suitable metrics for modeling these relationships. To this goal, landscape ecological metrics were calculated for each of the 32 counties of Mazandaran and Guilan provinces located in the southern basin of the Caspian Sea using land use/cover maps in class level. Stream network metrics were calculated using a digital elevation model, road density metrics were calculated using map of main roads separately, and significant metrics were selected according to results of correlation tests and factor analysis. The correlations between these metrics and socioeconomic factors were tested, and their relationships were modeled with multiple linear regressions. Significant relationships were found among socioeconomic factors and landscape ecological metrics, and land use/cover data are applicable for modeling socioeconomic factors, especially demographic and employment structure factors. Among the landscape metrics applied in this study, road density, mean patch size, mean nearest neighbor distance, and percentage of a land use/cover class in landscape were important metrics for predicting socioeconomic factors. Our findings indicated that road density metric and percentages of urban class are useful for predicting urban socioeconomic factors and percentage of agriculture and forest classes in the landscape are suitable metrics for predicting rural socioeconomic factors.  相似文献   

10.
Effects of Scale and Logging on Landscape Structure in a Forest Mosaic   总被引:2,自引:0,他引:2  
Landscape structure in a forest mosaic changes with spatial scale (i.e. spatial extent) and thresholds may occur where structure changes markedly. Forest management alters landscapestructure and may affect the intensity and location of thresholds. Our purpose was to examine landscape structure at different scales to determine thresholds where landscape structure changes markedly in managed forest mosaics of the Appalachian Mountains in the eastern United States. We also investigated how logging influences landscape structure and whether these management activities change threshold values. Using threshold and autocorrelation analyses, we found that thresholds in landscape indices exist at 400, 500, and 800 m intervals from the outer edge of management units in our studyregion. For landscape indices that consider all landcovercategories, such as dominance and contagion, landscape structureand thresholds did not change after logging occurred. Measurements for these overall landscape indices were stronglyinfluenced by midsuccessional deciduous forest, the most commonlandcover category in the landscape. When restricting analysesfor mean patch size and percent cover to individual forest types,thresholds for early-successional forests changed after logging. However, logging changed the landscape structure at small spatialscale, but did not alter the structure of the entire forestmosaic. Previous forest management may already have increasedthe heterogeneity of the landscape beyond the point whereadditional small cuts alter the overall structure of the forest. Because measurements for landscape indices yield very differentresults at different spatial scales, it is important first toidentify thresholds in order to determine the appropriate scalesfor landscape ecological studies. We found that threshold andautocorrelation analyses were simple but powerful tools for thedetection of appropriate scales in the managed forest mosaicunder study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号