首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A sequential extraction procedure was carried out to determinate the concentrations of 11 elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in different geochemical phases of sediments collected along the Hugli (Ganges) River Estuary and in the Sundarban mangrove wetland, eastern coastal part of India. The chemical speciation of elements was determined using the three-step sequential extraction procedure described by the European Community Bureau of Reference. Total metal concentration was determined using a microwave-assisted acid digestion procedure. Metal concentrations were near the background level except for As for which a moderate pollution can be hypothesized. The mobility order of the metals was: Cd?>?Mn?>?Cu?>?Zn?>?As?>?Co?>?Pb?>?Ni?>?Fe?>?Cr?>?Al. The highest percentage of Cd (>60%) was found in the most labile phase. Residual fraction was prevailing for Fe, Cr and Al, while Pb was mainly associated with the reducible fraction. Data were compared with Sediment Quality Guidelines to estimate the relationship between element concentrations and adverse biological effects on benthic community, finding the possibility of some toxic effects due to the presence of As in the entire studied area and Cd, only in Calcutta.  相似文献   

2.
In this paper, the heavy metal levels (Cu, Pb, Zn, Ni, Mn, Fe, As, Cd, Cr, Hg), organic carbon, and chlorophyll degradation products were studied to prove their ecological effects in Lake Ç?ld?r, where fossil fuels are used as an energy source in the studied area for most of the year, and domestic waste from settlements is discharged directly into the lake. Sediment samples were collected from six sites on the northern shore of Ç?ld?r Lake, Turkey in November 2012. Enrichment (EF) and contamination factor (CF) values were determined, and Pollution Load (PLI) and Potential Ecological Risk (PER) indices were calculated. Average concentrations of heavy metals in the sediments were, in descending order, Fe?>?Mn?>?Zn?>?Ni?>?Cr?>?Cu?>?Pb?>?As?>?Cd?>?Hg, respectively. According to mean values, the source of these elements may be considered natural due to lack of enrichment in Cu, Pb, Zn, Ni, and Cr in the sediment samples. Regarding enrichment of As, Cd, Mn, and Hg, the highest EF belongs to Hg. PLI and PER values indicate there are moderate ecological risk in the lake.  相似文献   

3.
Concentrations of Cu, Zn, Pb, Cr, Cd, Fe, and Ni have been estimated in soils and vegetables grown in and around an industrial area of Bangladesh. The order of metal contents was found to be Fe > Cu > Zn > Cr > Pb > Ni > Cd in contaminated irrigation water, and a similar pattern Fe > Zn > Ni > Cr > Pb > Cu > Cd was also observed in arable soils. Metal levels observed in different sources were compared with WHO, SEPA, and established permissible levels reported by different authors. Mean concentration of Cu, Fe, and Cd in irrigation water and Cd content in soil were much above the recommended level. Accumulation of the heavy metals in vegetables studied was lower than the recommended maximum tolerable levels proposed by the Joint FAO/WHO Expert Committee on Food Additives (1999), with the exception of Cd which exhibited elevated content. Uptake and translocation pattern of metal from soil to edible parts of vegetables were quite distinguished for almost all the elements examined.  相似文献   

4.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

5.
Lichens and cryoconite (rounded or granular, brownish-black debris occurring in holes on the glacier surface) from Ny-Ålesund were used for understanding the elemental deposition pattern in the area. Lichen samples collected from low-lying coastal region and cryoconite samples from high altitudinal glacier area were processed and analysed for elements such as aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) through inductively coupled plasma mass spectrometry. Results showed that heavy metals, Al and Fe, are present in high concentration in the cryoconite samples. Al was also present in high amounts in seven of the eight lichen samples studied. The general scheme of elements in the decreasing order of their concentrations for most of the cryoconite samples was Al?>?Fe?>?Mn?>?Zn?>?V?>?Pb?>?Cr?>?Ni?>?Cu?>?Co?>?As?>?Cs?>?Cd while that for the lichen samples was Al?>?Fe?>?Zn?>?Mn?>?Pb?>?Cu?>?Cs?>?Cr?>?Ni?>?V?>?Co?>?As?>?Cd. Similarity in trends in the two sample types confirms that the environment indeed contains these elements in that order of concentration which overtime got accumulated in the samples. Overall comparison showed most elements to be present in high concentrations in the cryoconite samples as compared to the lichen samples. Within the lichens, elemental accumulation data suggests that the low-lying site (L-2) from where Cladonia mediterranea sample was collected was the most polluted accumulating a number of elements at high concentrations. The probable reasons for such deposition patterns in the region could be natural (crustal contribution and sea salt spray) and anthropogenic (local and long-distance transmission of dust particles). In the future, this data can form a baseline for monitoring quantum of atmospheric heavy metal deposition in lichens and cryoconite of Svalbard, Arctic.  相似文献   

6.
Nine metals were monitored in the beach sediment in Mumbai from May 2011 to March 2012 to evaluate the spatial and temporal distributions. The average heavy metal concentrations exhibited the following order: Fe > Mn > Cr > Co > Ni > Pb > Zn > Cu > Cd for the four sampling sites. The mean concentrations (± SD) of Fe, Mn, Cr, Co, Ni, Pb, Zn, Cu and Cd were estimated to be 31.15?±?10.02 g kg?1, 535.04?±?76.42, 151.98?±?97.90, 92.76?±?14.18, 67.52?±?11.32, 59.57?±?15.19, 54.65?±?15.01, 32.24?±?8.07 and 18.75?±?1.76 mg kg?1, respectively. The results indicated that the sediments were polluted with Cd, Cr, Co and Pb due to high anthropogenic influences. Spatial variation of metals revealed that most of the metals were high in Dadar beach and low in Aksa beach. Cd was the highest contaminant metal studied with a mean contamination factor of 93.75. The pollution load indices of the studied beaches ranged from 1.63 (Aksa) to 1.91 (Dadar) and indicated that the beach sediments were polluted with heavy metals. The heavy metal contents increased in relation to monsoon, and most of the heavy metals showed significantly high concentrations in November during the post-monsoon. The statistical analysis revealed significant effect of study site on all the metals studied. Further, there was a significant difference on metal accumulation on bimonthly basis in relation to weather pattern in Mumbai beaches.  相似文献   

7.
The concentrations of toxic heavy metals—Cd and Pb and micronutrients—Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I—the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II—the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III—the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p?<?0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd?>?Mn?>?Zn?>?Cu?>?Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II?>?stage III?>?stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.  相似文献   

8.
Concentrations of trace elements (Cd, Cu, Ni, Pb, V, and Zn) were determined in the soft tissues (adductor muscle and gills) of the pearl oyster Pinctada radiata and surficial sediments from two sampling sites located in the northern part of the Persian Gulf by Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS). Moreover, the levels of Li, Mg, Al, Mn, Fe, Cu, Sr, Ba, Pb, and Zn were measured in two shell layers (prismatic and nacreous) using Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). There were significant differences between the sampling sites with regard to mean concentrations of Cu, Mn, and Al in the prismatic layers of the shells. But in terms of the soft tissues, only in the case of Ni accumulation in the muscle significant differences between the sites could be observed. No significant differences could be found between the sites from the elements concentrations in the sediments point of view. The levels of Cd, Cu, Ni, and Zn in the gills were markedly higher than those in the muscle. Concentrations of Mn, Mg, Li, and Cu in the prismatic layer were significantly higher than in the nacreous but the reverse case could be found for Sr. The patterns of metal occurrence in the selected tissues, shell layers, and sediments exhibited the following descending order: Zn, Ni?>?Cd, Cu?>?V, and Pb and Zn, Ni, Cd?>?Cu, V, and Pb for muscle and gills, respectively; Zn?>?Cu, Ni, Pb, Cd, and V for sediments; Mg?>?Sr, Mn, Li, Al, Fe, Ba, Cu, Pb, and Zn for the prismatic layer; and Sr, Mg?>?Mn, Al, Fe, Li, Ba, Cu, Pb, and Zn for the nacreous layer. In most cases, the temporal variations of the elements levels in the prismatic layer were clearer than those in the nacreous layer (especially for Li, Mg, Mn, Pb, and Fe). Comparison of the gained data from this study with the other relevant researches shows that in most cases the levels of the elements in this investigation either fell within the range for other world areas or were lower. Generally, it can be concluded that the shell (especially prismatic layer) of P. radiata can be considered as a suitable proxy for temporal and spatial variations of the trace elements (and probably some environmental parameters) in the study area.  相似文献   

9.
Guideline values are used to identify polluted or contaminated areas based on background values. Brazilian law establishes three guideline values for pollutants: a quality reference value (QRV), a prevention value, and an intervention value. Reference values refer to the natural concentration of an element or a substance in soils that have not been modified by anthropogenic impacts. These values inform assessments of soil quality and are used to establish maximum permissible limits. The objective of this study was to determine the natural levels and reference values for Cd, Co, Cr, Cu, Ni, Pb, and Zn in samples from the surface layer (0–20 cm) of 19 representative soils of the states of Mato Grosso and Rondônia, on Brazil’s agricultural frontier. Pseudo-total metal concentrations were obtained following microwave-assisted digestion using the aqua regia and EPA3051 methods. QRVs were calculated for each element as the 75th and 90th percentiles of the frequency distribution of the data. Natural levels of heavy metals in the soil samples followed the order: Cr?>?Zn?>?Cu?>?Co?>?Pb?>?Ni?>?and Cd (aqua regia) and Cr?>?Co?>?Cu?>?Pb?>?Zn?>?Ni?>?Cd (EPA3051). These values are generally lower than those reported in the Brazilian and international literature, which highlights the importance of establishing reference values for each state or for each soil type, taking into account the geomorphological, pedological, and geological diversity of the region under study.  相似文献   

10.
Active and abandoned primary and secondary goldmines have been observed to be major sources of metals into the environment. This study assessed the level of metal concentrations in rock and tailing samples collected from the abandoned primary goldmine site at Iperindo. A total of five rock and ten tailing samples were collected for this study. The tailing samples were subjected to physicochemical analysis using standard methods. The samples were analyzed for metals using inductively coupled plasma/optical emission spectrometry technique. The results obtained indicated that tailings were acidic (pH 5.02), with electrical conductivity 133.4 μS/cm, cation exchange capacity 8.95 meq/100 g, available phosphorus was 4.74 mg/L, organic carbon 5.58 %, and organic matter 9.63 %. The trends for metal concentrations within the samples were in the order: Zn?>?Cu?>?Co?>?Pb?>?Cr?>?As?>?Cd for rock samples, Cu?>?Zn?>?Cr?>?Pb?>?As?>?Co?>?Cd in tailing samples. Cd, Pb, and Zn in the rock were above the Abundance of Elements in Average Crustal Rocks standards. Principal component analysis showed higher variations among samples in Iperindo. Cd, Pb, Cr, Co, Cu, As, and Zn were strongly loaded to principal component 1, with these metals significantly contributing to variations in 65.76 % of rock and 53.24 % of tailing. This study suggests that the metal concentration in tailings is a reflection of the metal composition of the rocks.  相似文献   

11.
Concentrations of heavy metals (Ag, Cd, Cr, Cu, Fe, Ni, Pb ve Zn) were measured in running water and in tissues (muscle, liver, gill, skin and gonads) of one commercially valuable fish species (Carasobarbus luteus) from the Orontes (Asi) River (Güzelburç region) in Hatay (Southeastern Turkey). Results for levels in water compared with national and international water quality guidelines were found at the highest concentrations in international criteria’s WHO, EC and EPA, but Cd, Cu, Ni and Pb were found to exceed permissible level of drinking water in national criteria TSE-266 whereas Fe, Zn and Cr concentrations were within the permissible levels for drinking. The present study showed a significant seasonal variation (p?p?>?0.05), which showed seasonal variation of only Zn (p?C. luteus were below the permissible limit for human consumption, level of Cu being very close to the permissible limit. Consequently, continuous monitoring of heavy metal concentration in edible freshwater fish will be needed in Orontes River.  相似文献   

12.
The heavy metals (Fe, Zn, Pb, Ni, Cr, Co, and Cd) burden in wastewater, soil, and vegetable samples from a wastewater irrigated farm located at KorleBu, Accra has been investigated. Flame atomic absorption spectrometry after microwave digestion using a combination of HNO3, HCl, and H2O2 (for water), and HNO3 and HCl (for soil and vegetables). The mean concentrations (in milligrams per kilogram) of heavy metals in the soil samples were in the order of Fe (171?±?5.22)?>?Zn (36.06?±?4.54)?>?Pb (33.35?±?35.62)?>?Ni (6.31?±?8.15)?>?Cr (3.40?±?3.63)?>?Co (1.36?±?0.31)?>?Cd (0.43?±?0.24), while the vegetables were in the order of Fe (183.11?±?161.2)?>?Zn (5.38?±?3.50)?>?Ni (3.52?±?1.27)?>?Pb (2.49?±?1.81)?>?Cr (1.46?±?0.51)?>?Co (0.66?±?0.25)?>?Cd (0.36?±?0.15). The bioconcentration factors suggest environmental monitoring for the heavy metals as follows: Cd (0.828), Cr (0.431), Ni (0.558), Co (0.485), and Fe (1.067). Estimated daily intakes were very low for both children and adults except Fe (0.767 mg/kg/day) in children. The population that consume vegetables from the study area were, however, estimated to be safe based on the results obtained from the health risk index, which were all?<?<1. The sodium absorption ratio according to FAO (1985) classifications indicate that the wastewater in the study area is unsuitable for irrigation purposes.  相似文献   

13.
Urbanization can considerably affect water reservoirs by, inter alia, input, and accumulation of contaminants including metals. Located in the course of River Cybina, Maltański Reservoir (Western Poland) is an artificial shallow water body built for recreation and sport purposes which undergoes restoration treatment (drainage) every 4 years. In the present study, we demonstrate an accumulation of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in water, sediment, three bivalve species (Anodonta anatina, Anodonta cygnea, Unio tumidus), and macrophyte Phragmites australis collected before complete drainage in November 2012. The mean concentrations of metals in the sediment, bivalves, and P. australis (roots and leaves) decreased in the following order: Fe > Mn > Zn > Cu > Cr > Ni > Pb > Co > Cd. A considerably higher bioconcentration of metals was observed in samples collected from the western and southern sites which undergo a higher degree of human impact. Sediments were found to be a better indicator of metal contamination than water samples. Interspecific differences in levels of metal accumulation were found between investigated unionids. U. tumidus accumulated higher levels of Cr, positively correlated with ambient concentrations, predisposing this species as a potential bioindicator of this metal in aquatic environments. On the other hand, species of Anodonta genus demonstrated higher accumulation of Cu and Cd. Positive correlations were found between Pb content in the sediments and tissues of all three bivalve species. In P. australis, metals were largely retained in roots except for Cd and Pb for which higher concentrations were found in leaves suggesting additional absorption of these metals from aerial sources. P. australis and bivalve from the Maltański Reservoir may be a potential source of toxic metals for animals feeding upon them and contribute to further contamination in the food chain.  相似文献   

14.
To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.  相似文献   

15.
Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.  相似文献   

16.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

17.
The possibility of using Bidens pilosa L. var. radiate Sch leaves as environmental indicators of metallic element pollution has been investigated. Samples were analyzed with respect to the following pollutants: Zn, Mn, Cu, Ni, Pb, Cd, Cr, Fe, Ca, and Mg by using inductively coupled plasma atomic emission spectrometry. The results obtained on the metallic elements had the following average composition order: Ca > Mg > Fe, Mn > Zn > Cu > Ni > Pb > Cr > Cd for plant B. pilosa L. var. radiate Sch. at HK sampling site. In addition, the metallic elements had the following average composition order: Ca > Mg > Fe > Mn, Zn > Cu > Ni > Pb > Cr > Cd for plant B. pilosa L. var. radiate Sch. at TMP sampling site. Finally, the metallic elements had the following average composition order: Ca > Mg > Fe > Zn > Mn > Cu > Pb > Ni > Cr > Cd for plant B. pilosa L. var. radiate Sch. at LH sampling site. The seasonal average composition for metallic elements Mg, Fe, and Pb were ranked highest at HK sampling site in winter. In addition, seasonal average composition for metallic elements Mn, Zn, and Cd were ranked highest at TMP sampling site in winter. Finally, seasonal average composition for metallic elements Mg, Fe, and Cu were ranked highest at LH sampling site in spring.  相似文献   

18.
Quality parameters from 17 sampling stations from Lake Koronia and 18 from Lake Volvi were determined during sampling period of one year. Physicochemical parameters (pH, conductivity, DO) did not show remarkable differences neither between sampling sites nor between sampling periods. Nutrient concentrations (nitrogen and phosphorus compounds) were higher in lake Koronia than in Volvi showing relatively small temporal and spatial variations. As far as heavy metals in sediments, lake Koronia is considerably more polluted than Volvi lake especially with the metals Fe, Mn, Zn, Pb and Cd. The mean total concentrations of metals in lake Koronia decrease in the order Mn > Zn > Cr > Pb > Cu > Fe > Cd. The mean total concentrations of metals in lake Volvi decrease in the order Mn > Zn > Cr > Cu > Pb > Fe $>$ Cd.  相似文献   

19.
Concentration of Cd, Co, Cr, Ni, Zn, Fe, Mn, Pb and Cu were determinedin biota and sediment samples collected from the Marmara Sea in Turkey. The levels of Zn, Fe, Mn, Pb and Cu in the macroalgae are higher than previous studies in the Marmara Sea. Moreover, Cu and Zn concentrations at the present study are significantly high than Bosphorus and Black Sea algae. The order heavy metal concentrations in the mussel samples was: Fe > Zn > Ni > Mn > Cu > Pb > Cr > Cd > Co. The metal concentrations are generally lower when compared with the Black Sea mussels except Pb. At the same time, concentrations of Pb, Cu and Zn in the mussel species are lower when compared with the results in the Aegean Sea. The ranges of Mn and Cu in the tested fish samples are higher than Black Sea fish. On the other hand, Cd, Co, Cr, Zn and Pb concentrations are lower. The northern coast of the Marmara Sea having the highest metal concentrations in sediments as follows: Co, Cr, Ni, Fe at ?arköy ; Pb, Cu at M. Ere?li; Cd, Zn, Mn at Menek?e. The heavy metal levels in the sediment samples are lower than other areas in the Marmara Sea.  相似文献   

20.
The European eel’s swimbladder nematode, Anguillicola crassus, sampled from the Asi River (Orontes River) in Antakya (Hatay, Turkey) in May 2006 were analysed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) for their some heavy metal (Cd, Cr, Cu, Fe, Hg, Mn, Pb and Zn) levels. The metal concentrations of the parasites were compared to different organs (swimbladder, liver, muscle and skin) of the fish hosts. The parasite contained statistically highly significantly amounts of Fe (P < 0.05). The iron level of nematode was up to 25.52 times than the muscle of its host, Anguilla anguilla. However, bioconcentration of Cd, Cr, Cu, Hg, Mn, Pb, Zn were detected in the A. crassus and it contained no statistically differences with the other tissues of its host, the eel (P > 0.05). Furthermore, no significant differences were detected in the heavy metal accumulations between the parasitized and un-parasitized fish tissues. The analysed metals (Cd, Cr, Cu, Fe, Mn, Pb and Zn) were found in fish muscle at mean concentrations under the permissible limits proposed by FAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号