首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2 = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2 = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.  相似文献   

2.
Mapping forest biomass is fundamental for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m?×?31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10–40, 40–70 and >70 % of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m3 ha?1. The total growing stock of the forest was found to be 2,024,652.88 m3. The AGWB ranged from 143 to 421 Mgha?1. Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE)?=?42.25 Mgha?1) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha?1 respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha?1. The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.  相似文献   

3.
China maintains the largest artificial forest area in the world. Studying the dynamic variation of forest biomass and carbon stock is important to the sustainable use of forest resources and understanding of the artificial forest carbon budget in China. In this study, we investigated the potential of Landsat time series stacks for aboveground biomass (AGB) estimation in Yulin District, a key region of the Three-North Shelter region of China. Firstly, the afforestation age was successfully retrieved from the Landsat time series stacks in the last 40 years (from 1974 to 2013) and shown to be consistent with the surveyed tree ages, with a root-mean-square error (RMSE) value of 4.32 years and a determination coefficient (R 2) of 0.824. Then, the AGB regression models were successfully developed by integrating vegetation indices and tree age. The simple ratio vegetation index (SR) is the best candidate of the commonly used vegetation indices for estimating forest AGB, and the forest AGB model was significantly improved using the combination of SR and tree age, with R 2 values from 0.50 to 0.727. Finally, the forest AGB images were mapped at eight epochs from 1985 to 2013 using SR and afforestation age. The total forest AGB in seven counties of Yulin District increased by 20.8 G kg, from 5.8 G kg in 1986 to 26.6 G kg in 2013, a total increase of 360 %. For the persistent forest area since 1974, the forest AGB density increased from 15.72 t/ha in 1986 to 44.53 t/ha in 2013, with an annual rate of about 0.98 t/ha. For the artificial forest planted after 1974, the AGB density increased about 1.03 t/ha a year from 1974 to 2013. The results present a noticeable carbon increment for the planted artificial forest in Yulin District over the last four decades.  相似文献   

4.
Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha?1 and 2.79 to 4.92 m2 ha?1, respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson’s index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha?1, respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between themselves in terms of basal area (BA). The total shrub production was 1.59–3.53 t ha?1 year?1 while the C sequestration potential of 0.71–1.57 t ha?1 year?1 under different fire regimes. Shrub community in the medium fire zone reflected higher productivity and higher C sequestration in comparison to other fire zone. Among the different plant parts, the biomass accumulation ratio was highest in the root of shrub community among various fire regimes. Screening of species for restoration and different land-use pattern on the basis of biomass accumulation and carbon sequestering potential would be an effective strategy for decision-making in sustainable forest management.  相似文献   

5.
At present, dynamic land use, climate change, and growing needs for fresh water are increasing the demand on the ecosystem effects of forest vegetation. Mountainous areas are at the forefront of scientific interest in European forest ecology and forest hydrology. Although uplands cover a significant area of the Czech Republic and other countries and are often covered with forest formations, they do not receive an appropriate amount of attention. Therefore, two experimental upland head micro-watersheds in the Bohemian Massif were selected for study because they display similar natural conditions, but different vegetative conditions (forest versus meadow). During the 2011 growing season, short-term streamflow measurements were carried out at the discharge profiles of both catchments and were evaluated in relation to climatic data (rainfall and temperature). The basic premise was that the streamflow in a forested catchment must exhibit different temporal dynamics compared to that in treeless areas and that these differences can be attributed to the effects of woody vegetation. These conclusions were drawn from measurements performed during dry periods lasting several days. A decreasing streamflow trend during the day part of the day (0900–1900 hours) was observed in both localities. The decrease reached approx. 44 % of the initial morning streamflow (0.24 dm3 s?1 day?1) in the treeless catchment and approx. 20 % (0.19 dm3 s?1 day?1) in the forested catchment. At night (1900–0900 hours), the streamflow in the forested catchment increased back to its initial level, whereas the streamflow in the treeless catchment stagnated or slowly decreased. We attribute these differences to the ecosystem effects of woody vegetation and its capacity to control water loss during the day. This type of vegetation can also function as a water source for the hydrographic network during the night.  相似文献   

6.
An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People??s Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115 ± 15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1 ± 0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.  相似文献   

7.
New forest management and planning approaches are designed to optimize forest structure. Optimal forest structure was determined using newly established growth models while considering primary timber production objectives as well as non-timber objectives for inaccessible areas and social and political pressures on land management. With currently planned management the forests of the Ormanüstü Planning Unit (OPU) in the Black Sea region of northern Turkey are likely to become an important C sink. To quantify this potential C sink and understand its implication to the regional carbon budget and future forest management, we estimated the changes in the OPU between 1973 and 2006. Based on four periods of data for the OPU forests obtained from the Forest Management and Planning Office of Turkey, we used allometric biomass and C regression equations along with biomass expansion factors to estimate the forest biomass carbon pool for each of four inventory years 1973, 1984, 1997, and 2006. Since 1973, OPU forests have accumulated 110.2?×?103 tons of C as a result of forest expansion and the growth of extant forests, increasing by 50.8 % from 217?×?103 tons in 1973 to 327.2?×?103 tons C in 2006. Hardwood and softwood forests accounted for 44 and 56 % of carbon accumulation during this period, respectively. From 1973 through 2006, forest C accumulated at a rate of 3.3?×?103 tons C year?1. Carbon density of the OPU forests in the Black Sea region increased by 48.2 % from 5,679 to 8,419 tons/ha.  相似文献   

8.
Delhi is one of the most polluted cities in the world. The generation of aerosols in the lower atmosphere of the city is mainly due to a large amount of natural dust advection and sizable anthropogenic activities. The compositions of organic compounds in aerosols are highly variable in this region and need to be investigated thoroughly. Twenty-four-hour sampling to assess concentrations of n-alkanes (ng/m3) in PM10 was carried out during January 2015 to June 2015 at Indira Gandhi Delhi Technical University for Women (IGDTUW) Campus, Delhi, India. The total average concentration of n-alkanes, 243.7 ± 5.5 ng/m3, along with the diagnostic tools has been calculated. The values of CPI1, CPI2, and CPI3 for the whole range of n-alkanes series, petrogenic n-alkanes, and biogenic n-alkanes were 1.00, 1.02, and 1.04, respectively, and C max were at C25 and C27. Diagnostic indices and curves indicated that the dominant inputs of n-alkanes are from petrogenic emissions, with lower contribution from biogenic emissions. Significant seasonal variations were observed in average concentrations of n-alkanes, which is comparatively higher in winter (187.4 ± 4.3 ng/m3) than during the summer season (56.3 ± 1.1 ng/m3).  相似文献   

9.
Soil respiration rates were measured monthly (from April 2007 to March 2008) under four adjacent coniferous plantation sites [Oriental spruce (Picea orientalis L.), Austrian pine (Pinus nigra Arnold), Turkish fir (Abies bornmulleriana L.), and Scots pine (Pinus sylvestris L.)] and adjacent natural Sessile oak forest (Quercus petraea L.) in Belgrad Forest—Istanbul/Turkey. Also, soil moisture, soil temperature, and fine root biomass were determined to identify the underlying environmental variables among sites which are most likely causing differences in soil respiration. Mean annual soil moisture was determined to be between 6.3 % and 8.1 %, and mean annual temperature ranged from 13.0°C to 14.2°C under all species. Mean annual fine root biomass changed between 368.09 g/m2 and 883.71 g/m2 indicating significant differences among species. Except May 2007, monthly soil respiration rates show significantly difference among species. However, focusing on tree species, differences of mean annual respiration rates did not differ significantly. Mean annual soil respiration ranged from 0.56 to 1.09 g?C/m2/day. The highest rates of soil respiration reached on autumn months and the lowest rates were determined on summer season. Soil temperature, soil moisture, and fine root biomass explain mean annual soil respiration rates at the highest under Austrian pine (R 2?=?0.562) and the lowest (R 2?=?0.223) under Turkish fir.  相似文献   

10.
An accurate estimation of a plant's age is required for the prediction of yield and management practices. This study demonstrates the relationship between backscattering properties (σ°) of Phased Array type L-band Synthetic Aperture Radar (PALSAR) dual polarimetric data with cashew plants' biophysical parameters (height, age, crown diameter, diameter at breast height, basal area, tree density, and biomass) in Cambodia. PALSAR σ° has shown a positive correlation with the biophysical parameters of cashew plants. The value of σ° increases with the age of cashew plants. At a young stage, the cashew plants show a higher rate of an increase in σ° compared to that at the mature stage. The σ° horizontal polarization transmitted and vertical received (HV) shows higher sensitivity to the plant's growth than σ° horizontal polarization transmitted and received (HH). High backscattering and low variations were observed at mature stage (8–12 years) of cashew plantation. Saturation in backscattering has shown from the age of about 13 years. The validation results indicate strong coefficient of determination (R 2?=?0.86 and 0.88) for PALSAR-predicted age and biomass of cashew plants with root mean square error?=?1.8 years and 16.3 t/ha for age and biomass, respectively. The correlations of σ° (HH) with biophysical parameters observed in the dry season were better than those of the rainy season because soil moisture interferes with backscattering in the rainy season. Biomass accumulation rate of cashew plants has been predicted that would be useful for selection of plants species to enhance carbon sequestration. This study provides an insight to use PALSAR for the monitoring of growth stages of plants at the regional level.  相似文献   

11.
Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored marshes dominated by Spartina maritima to provide support for restoration and management strategies that may offset negative aspects of eutrophication and climate change in estuarine ecosystems. Sediment C content was between ca. 13 mg C g?1and sediment N content was ca. 1.8 mg N g?1. The highest C content for S. maritima was recorded in leaves and stems (ca. 420 mg C g?1) and the lowest in roots (361?±?4 mg C g?1). S. maritima also concentrated more N in its leaves (31?±?1 mg N g?1) than in other organs. C stock in the restored marshes was 29.6 t C ha?1; ca. 16 % was stored in S. maritima tissues. N stock was 3.6 t N ha?1, with 8.3 % stored in S. maritima. Our results showed that the S. maritima restored marshes, 2.5 years after planting, were sequestering atmospheric C and, therefore, provide some mitigation for global warming. Stands are also capturing nitrogen and reducing eutrophication. The concentrations of C and N contents in sediments, and cordgrass relative cover of 62 %, and low below-ground biomass (BGB) suggest restored marshes can sequester more C and N. S. maritima plantations in low marshes replace bare sediments and invasive populations of exotic Spartina densiflora and increase the C and N sequestration capacity of the marsh by increasing biomass production and accumulation.  相似文献   

12.
The spatial variation of chlorophyll a (Chl a) and factors influencing the high Chl a were studied during austral summer based on the physical and biogeochemical parameters collected near the coastal waters of Antarctica in 2010 and a zonal section along 60°S in 2011. In the coastal waters, high Chl a (>3 mg m?3) was observed near the upper layers (~15 m) between 53°30′E and 54°30′E. A comparatively higher mesozooplankton biomass (53.33 ml 100 m?3) was also observed concordant with the elevated Chl a. Low saline water formed by melting of glacial ice and snow, as well as deep mixed-layer depth (60 m) due to strong wind (>11 ms?1) could be the dominant factors for this biological response. In the open ocean, moderately high surface Chl a was observed (>0.6 mg m?3) between 47°E and 50°E along with a Deep Chlorophyll Maximum of ~1 mg m?3 present at 30–40 m depth. Melt water advected from the Antarctic continent could be the prime reason for this high Chl a. The mesozooplankton biomass (22.76 ml 100 m?3) observed in the open ocean was comparatively lower than that in the coastal waters. Physical factors such as melting, advection of melt water from Antarctic continent, water masses and wind-induced vertical mixing may be the possible reasons that led to the increase in phytoplankton biomass (Chl a).  相似文献   

13.
Phytoplankton species distribution and composition were determined by using microscopy and pigment ratios in the Kongsfjorden during early autumn 2012. Variation in sea surface temperature (SST) was minimal and matched well with satellite-derived SST. Nutrients were generally limited. Surface phytoplankton abundance ranged from 0.21?×?103 to 10.28?×?103 cells L?1. Phytoplankton abundance decreased with depth and did not show any significant correlation with chlorophyll a (chl a). Column-integrated phytoplankton cell counts (PCC) ranged from 94.3?×?106 cells m?2 (Kf4) to 13.7?×?106 cells m?2 (Kf5), while chl a was lowest at inner part of the fjord (6.3 mg m?2) and highest towards the mouth (24.83 mg m?2). Biomass from prymnesiophytes and raphidophytes dominated at surface and 10 m, respectively. The contribution of Bacillariophyceae to biomass was low. Generally, heterotrophic dinoflagellates were great in abundance (12.82 %) and ubiquitous in nature and were major contributors to biomass. Various chl pigments (chl b, chl c, phaeopigments (phaeo)) were measured to obtain pigment/chl a ratios to ascertain phytoplankton composition. Phaeo were observed only in inner fjord. Chl b:a ratios and microscopic observations indicated dominance of Chlorophyceae at greater depths than surface. Furthermore, microscopic observations confirmed dominance of chl c containing algae throughout the fjord. The study indicates that pigment ratios can be used as a tool for preliminary identification of major phytoplankton groups. However, under the presence of a large number of heterotrophic dinoflagellates such as Gymnodinium sp. and Gyrodinium sp., pigment signatures need to be supplemented by microscopic observations.  相似文献   

14.
We have evaluated the performance of three satellite-based latent heat flux (LE) algorithms over forest ecosystems using observed data from 40 flux towers distributed across the world on all continents. These are the revised remote sensing-based Penman-Monteith LE (RRS-PM) algorithm, the modified satellite-based Priestley-Taylor LE (MS-PT) algorithm, and the semi-empirical Penman LE (UMD-SEMI) algorithm. Sensitivity analysis illustrates that both energy and vegetation terms has the highest sensitivity compared with other input variables. The validation results show that three algorithms demonstrate substantial differences in algorithm performance for estimating daily LE variations among five forest ecosystem biomes. Based on the average Nash-Sutcliffe efficiency and root-mean-squared error (RMSE), the MS-PT algorithm has high performance over both deciduous broadleaf forest (DBF) (0.81, 25.4 W/m2) and mixed forest (MF) (0.62, 25.3 W/m2) sites, the RRS-PM algorithm has high performance over evergreen broadleaf forest (EBF) (0.4, 28.1 W/m2) sites, and the UMD-SEMI algorithm has high performance over both deciduous needleleaf forest (DNF) (0.78, 17.1 W/m2) and evergreen needleleaf forest (ENF) (0.51, 28.1 W/m2) sites. Perhaps the lower uncertainties in the required forcing data for the MS-PT algorithm, the complicated algorithm structure for the RRS-PM algorithm, and the calibrated coefficients of the UMD-SEMI algorithm based on ground-measured data may explain these differences.  相似文献   

15.
The tree Prosopis juliflora, introduced to Ethiopia in the 1970s to curb desertification, is imposing significant ecosystem and socioeconomic challenges. The objectives of this study are therefore to analyze the dynamics and associated impacts of the P. juliflora invasion over the period 1973–2004 and to evaluate the effectiveness of the management measures implemented to date. This required the analysis of Landsat images, field surveys, the use of structured questionnaires, and interviews. P. juliflora was found to invade new areas at an average rate of 3.48 km2/annum over the period 1973–2004. The high germination nature of the seed, mechanisms of seed dispersal, and its wide-range ecological adaptability are the main drivers for the high invasion rate. By the year 2020, approximately 30.89 % of the study area is projected to be covered by P. juliflora. The expansion has affected human health, suppressed indigenous plants, and decreased livestock productivity. The management measures that have been implemented are not able to yield the desirable results because of the limited spatial scale, cost, and/or improper planning and implementation. Therefore, the formulation of a strategy for management approaches that include the engagement of the community and the limiting of the number of vector animals within the framework of the current villagization program remain important. Moreover, risk assessment should be completed in the future before an exotic species is introduced into a certain area.  相似文献   

16.
Site index is an important forest inventory attribute that relates productivity and growth expectation of forests over time. In forest inventory programs, site index is used in conjunction with other forest inventory attributes (i.e., height, age) for the estimation of stand volume. In turn, stand volumes are used to estimate biomass (and biomass components) and enable conversion to carbon. In this research, we explore the implications and consequences of different estimates of site index on carbon stock characterization for a 2,500-ha Douglas-fir-dominated landscape located on Eastern Vancouver Island, British Columbia, Canada. We compared site index estimates from an existing forest inventory to estimates generated from a combination of forest inventory and light detection and ranging (LIDAR)-derived attributes and then examined the resultant differences in biomass estimates generated from a carbon budget model (Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)). Significant differences were found between the original and LIDAR-derived site indices for all species types and for the resulting 5-m site classes (p?<?0.001). The LIDAR-derived site class was greater than the original site class for 42% of stands; however, 77% of stands were within ±1 site class of the original class. Differences in biomass estimates between the model scenarios were significant for both total stand biomass and biomass per hectare (p?<?0.001); differences for Douglas-fir-dominated stands (representing 85% of all stands) were not significant (p?=?0.288). Overall, the relationship between the two biomass estimates was strong (R 2?=?0.92, p?<?0.001), suggesting that in certain circumstances, LIDAR may have a role to play in site index estimation and biomass mapping.  相似文献   

17.
This study deals with the future scope of REDD (Reduced Emissions from Deforestation and forest Degradation) and REDD+ regimes for measuring and monitoring the current state and dynamics of carbon stocks over time with integrated geospatial and field-based biomass inventory approach. Multi-temporal and multi-resolution geospatial synergic approach incorporating satellite sensors from moderate to high resolution with stratified random sampling design is used. The inventory process involves a continuous forest inventory to facilitate the quantification of possible CO2 reductions over time using statistical up-scaling procedures on various levels. The combined approach was applied on a regional scale taking Himachal Pradesh (India), as a case study, with a hierarchy of forest strata representing the forest structure found in India. Biophysical modeling implemented revealed power regression model as the best fit (R 2?=?0.82) to model the relationship between Normalized Difference Vegetation Index and biomass which was further implemented to calculate multi-temporal above ground biomass and carbon sequestration. The calculated value of net carbon sequestered by the forests totaled to 11.52 million tons (Mt) over the period of 20 years at the rate of 0.58 Mt per year since 1990 while CO2 equivalent reduced from the environment by the forests under study during 20 years comes to 42.26 Mt in the study area.  相似文献   

18.
The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K2SO4. The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K2SO4 treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m???2) followed by Ca (46 g m???2), CaNP (25 g m???2), CaNP-KCl (15 g m???2), CaNP-K2SO4 (9 g m???2), and CaN (2 g m???2) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m???2. Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.  相似文献   

19.
Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004–2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km2. There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km2 (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km2 is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km2) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.  相似文献   

20.
The prevalence of fluorosis is mainly due to the consumption of more fluoride (F?1) through drinking water, vegetables, and crops. The objective of the study was mapping of F?1 endemic area of Newai Tehsil, Tonk district, Rajasthan, India. For the present study, water, soil (0–45 cm), and vegetation samples were collected from 17 villages. Fluoride concentration in water samples ranged from 0.3 to 9.8 mg/l. Out of 17 villages studied, the amounts of F?1 content of eight villages were found to exceed the permissible limits. Labile F?1 content and total F?1 content in soil samples ranges 11.00–70.05 mg/l and 50.3–179.63 μg g?1, respectively. F?1 content in tree species was found in this order Azadirachta indica 47.3255.76 μg g?1 > Prosopis juliflora 40.16–49.63 μg g?1 > Acacia tortilis 34.39–43.60 μg g?1. While in case of leafy vegetables, F?1 content order was Chenopodium album 54.23–98.42 μg g?1 > Spinacea oleracea 30.41–64.09 μg g?1 > Mentha arvensis 35.4851.97 μg g?1. The order of F?1 content in crops was found as 41.04 μg g?1 Pennisetum glaucum > 13.61 μg g?1 Brassica juncea > 7.98 μg g?1 Triticum sativum in Krishi Vigyan Kendra (KVK) farms. Among vegetation, the leafy vegetables have more F?1 content. From the results, it is suggested that the people of KVK farms should avoid the use of highly F?1 containing water for irrigation and drinking purpose. It has been recommended to the government authority to take serious steps to supply drinking water with low F?1 concentration for the fluorosis affected villages. Further, grow more F?1 hyperaccumulator plants in F?1 endemic areas to lower the F?1 content of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号