首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to investigate possible seawater intrusion into groundwater along the coastal lines of the Bafra Plain and salinity–alkalinity problems over land areas irrigated with water exposed to seawater intrusion were evaluated. For this purpose, 32 groundwater wells were selected over the plain, water samples were taken from these wells between October 2007 and September 2008, and chemical analyses were performed over these samples. Soil samples were taken from the fields irrigated with this water at 32 different locations at the end of the irrigation season in September 2008 from 0–30, 30–60, 60–90, and 90–120 cm soil depths and textures. EC, pH, Na, Ca, Mg, and K analyses were performed over these samples. Excessive seawater intrusion was observed in some parts of the plain and impacts of seawater intrusion decreased with the distance from the coastal line. It was determined that groundwater quality was significantly affected from seawater intrusion. Salinity and especially alkalinity problems were observed in land areas irrigated with this water and alkalinity increased with the rate of intrusion.  相似文献   

2.
Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na+/Cl? molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n?=?20) can be classified into two groups. SGWS of group 1 (n?=?17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9 % of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n?=?3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n?=?2) and inflow of saline river water (n?=?1).  相似文献   

3.
The development of groundwater resources for water supply is a favored way in Turkey. The Berdan alluvial aquifer in Mersin is particularly productive, but little is known about the natural phenomena that govern the groundwater quality and the contamination sources in this region. During 2001 and 2002, water samples for chemical analysis were obtained from 27 wells and from two points of Berdan River and analyzed by ICP. Main chemical characteristics of sampled groundwater define two aquifers, which were also determined by hydrogeological investigations. The groundwater produced from some of the wells was affected by anthropogenic activities temporally and spatially by seawater intrusion. Berdan River is polluted with the wastewater discharges and river water also influences the groundwater quality.  相似文献   

4.
Investigation has been made to identify groundwater vulnerability to pollution by using geoelectric and hydrochemical investigations in an important industrial town Mettur located in Tamilnadu state of India. Schlumberger vertical electric soundings were carried out in 23 locations and groundwater samples collected from bore wells in the same locations. The resistivity value with <20 Ωm up to a depth of 36 m indicate contamination of groundwater in areas influenced by sewages from industries, domestic and agricultural practices in the central and southern part of the study area. The calculated specific conductance was noted higher than EC in central and southern part of the study area with low resistivity indicating the contaminated nature of groundwater. Concentrations of Ca, Na, Mg and K along with Cl, HCO(3), SO(4) and NO(3) were higher in certain locations when compared with WHO and ISI standards. The facies concept demarcated four groups based on the nature of groundwater contamination. The trace elements Fe and Pb were higher in locations confined to industrial zones and Zn and Cu were within the prescribed limit in all the samples.  相似文献   

5.
Groundwater samples are collected from 30 observation wells in the study area to analyze the hydrochemical quality for determining the seawater encroachment in the part of Central Godavari Delta, Bay of Bengal, India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, an integrated investigation coupled with multivariate statistical analysis and hydrochemical methods are used to identify and interpret the groundwater chemistry of the aquifer system. The major land use is irrigated agriculture and aquaculture in the study area. The ground waters affected by the seawater intrusion featured high levels of sodium (Na+), chloride (Ca+), and TDS, which are the simplest common indicators for seawater influence. The elevated levels of NO3–N at some monitoring wells indicate nitrate pollution of groundwater due to anthropogenic origin such as septic effluents or chemical fertilizers. Besides the major chemical compositions, it was also demonstrated that ionic ratios would be useful to delineate seawater intrusion and they include Na+/Ca2+, Mg2+/Ca2+, SO4 2?/Ca2+, Na+/(Na+?+?Cl?), and Ca?/sum of anions. This paper demonstrates the variations in hydrochemical quality of groundwater and its evolution processes in two different seasons in the coastal aquifer alluvial settings  相似文献   

6.
The accumulation of fluoride (F) in groundwater is a common phenomenon in India and worldwide. Its location can be identified through a direct hydrochemical analysis, which was carried out in Kurmapalli watershed (located 60 km SE of Hyderabad city), Nalgonda district, Andhra Pradesh, India affected by F contamination. The results of the hydrochemical analysis showed that F varied from 0.71 to 19.01 mg/l and its concentration exceeded the permissible limit (i.e., 1.5 mg/l) in 78% of the total 32 samples analyzed. The highest F value (19.01 mg/l) was found near Madnapur village, which is located in the central part of the watershed. Resistivity and induced polarization (IP) surveys were also carried out to reveal the zones where elevated F-contaminated groundwater exists. The objective of this paper was to highlight the utility of resistivity and IP surveys, using hydrochemical constituents as constraint, for the successful delineation of such contaminated/polluted groundwater zones in the granite area.  相似文献   

7.
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO3). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.  相似文献   

8.
Rural coastal aquifers are undergoing rapid changes due to increasing population, high water demand with expanding agricultural and domestic uses, and seawater intrusion due to unmanaged water pumping. The combined impact of these activities is the deterioration of groundwater quality, public health concerns, and unsustainable water demands. The Kalpitiya peninsula located northwest of Sri Lanka is one area undergoing such changes. This land area is limited and surrounded almost completely by sea and lagoon. This study consists of groundwater sampling and analysis, and vulnerability assessment using the DRASTIC method. The results reveal that the peninsula is experiencing multiple threats due to population growth, seawater intrusion, land use exploitation for intensive agriculture, groundwater vulnerability from agricultural and domestic uses, and potential public health impacts. Results show that nitrate is a prevalent and serious contaminant occurring in large concentrations (up to 128 mg/l NO3?CN), while salinity from seawater intrusion produces high chloride content (up to 471 mg/l), affecting freshwater sources. High nitrate levels may have already affected public health based on limited sampling for methemoglobin. The two main sources of nitrogen loadings in the area are fertilizer and human excreta. The major source of nitrogen results from the use of fertilizers and poor management of intense agricultural systems where a maximum application rate of up to 11.21 metric tons N/km2 per season is typical. These findings suggest that management of coastal aquifers requires an integrated approach to address both the prevalence of agriculture as an economic livelihood, and increasing population growth.  相似文献   

9.
Trace elements are essential for human health. However, excess concentrations of these elements cause health disorders. A study has been carried out in Visakhapatnam environs, Andhra Pradesh, India to ascertain the causes for the origin and distribution of iron content in the groundwaters. Fifty groundwater samples are collected and analyzed for iron. The content of iron ranges from 400 to 780 μg/l. A comparison of groundwater data with rock and soil chemistry suggests that the concentration of iron (400–530 μg/l) in the groundwaters is derived from the rocks and soils due to geogenic processes. This concentration is taken as a natural occurrence of iron in the groundwaters of the study area for assessing the causes for its next higher content (>530 μg/l). Relatively higher concentration of iron (540–550 μg/l) is observed at some well waters, where the wells are located nearby municipal wastewaters, while the very high concentration of iron (610–780 μg/l) is observed in the industrially polluted groundwater zones, indicating the impact of anthropogenic activities on the groundwater system. These activities mask the concentration of iron caused by geogenic origin. Hence, both the geogenic and anthropogenic activities degrade the groundwater quality. Drinking water standards indicate that the iron content in all the groundwater samples exceeds the permissible limit (300 μg/l) recommended for drinking purpose, causing the health disorders. Necessity of close monitoring of groundwater quality for assessing the impact of geogenic and anthropogenic sources with reference to land use/land cover activities is emphasized in the present study area to protect the groundwater resources from the pollution.  相似文献   

10.
In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01–1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04–0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0–15 cm (average concentration, 0.63 mg/g), >40–55 cm (average concentration, 0.36 mg/g), >100–115 cm (average concentration, 0.29 mg/g), and >500–515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.  相似文献   

11.
Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400–600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.  相似文献   

12.
Water with high nitrate concentration (NO3 ) is unfit for human consumption, especially when its concentration exceeded the threshold limit (50 mg/l) recommended by the health authorities such as the World Health Organization (WHO). In Jordan, there is a great concern for determination and monitoring organic and inorganic pollutants that may reach groundwater. Nitrate is highly mobile and present in domestic, agricultural and industrial waste in Jordan, and thus this study focused initially on nitrate as both a contaminant of concern and as an indicator of potential groundwater contamination. The present study determined the extent of nitrate contamination in groundwater in the study area and examined the likely sources of NO3 . A total of 248 groundwater samples were collected from 16 wells in different sites of Al-Hashimiya area, Zerqa Governorate, Jordan, and investigated for NO3 concentrations. Moreover, measurements of temperature, electrical conductivity and pH were carried out in the field. Analysis was carried out according to the methods described by the American Public Health Association (APHA). Results showed that there was a dramatic increasing in NO3 concentrations from the year 2001 to 2006 for some selected wells in the present study. NO3 concentration in 2006 was ranged from 10 to 330 mg/l with an average of 77 mg/l. Overall, groundwater had elevated nitrate concentration with 92% of the samples containing more than 20 mg/l NO3 , indicating the influence of human activities. This study has shown that there is a strong correlation between the nitrate concentration and the wastewater effluents as a source of pollution.  相似文献   

13.
Groundwater contamination and its effect on health in Turkey   总被引:1,自引:0,他引:1  
The sources of groundwater pollution in Turkey are identified, and pathways of contaminants to groundwater are first described. Then, the effects of groundwater quality on health in Turkey are evaluated. In general, sources of groundwater contamination fall into two main categories: natural and anthropogenic sources. Important sources of natural groundwater pollution in Turkey include geological formations, seawater intrusion, and geothermal fluid(s). The major sources of anthropogenic groundwater contamination are agricultural activities, mining waste, industrial waste, on-site septic tank systems, and pollution from imperfect well constructions. The analysis results revealed that natural contamination due to salt and gypsum are mostly found in Central and Mediterranean regions and arsenic in Aegean region. Geothermal fluids which contain fluoride poses a danger for skeleton, dental, and bone problems, especially in the areas of Denizli, Isparta, and Ayd?n. Discharges from surface water bodies contaminate groundwater by infiltration. Evidence of such contamination is found in Upper K?z?l?rmak basin, Gediz basin, and Büyük Melen river basin and some drinking water reservoirs in ?stanbul. Additionally, seawater intrusion causes groundwater quality problems in coastal regions, especially in the Aegean coast. Industrial wastes are also polluting surface and groundwater in industrialized regions of Turkey. Deterioration of water quality as a result of fertilizers and pesticides is another major problem especially in the regions of Mediterranean, Aegean, Central Anatolia, and Marmara. Abandoned mercury mines in the western regions of Turkey, especially in ?anakkale, ?zmir, Mu?la, Kütahya, and Bal?kesir, cause serious groundwater quality problems.  相似文献   

14.
Groundwater quality assessment has been carried out based on physicochemical parameters (pH, EC, TDS, CO(3), HCO(3), Cl, SO(4), PO(4), NO(2), Ca(+2), Mg(+2), Na(+) and K(+)) and metal concentration in the Rameswaram Island from 25 bore wells. The Langelier Saturation Index of the groundwater shows positive values (63% samples) with a tendency to deposit the CaCO(3) in the majority of water samples. Scatter plot (Ca + Mg/HCO(3)) suggests carbonate weathering process, which is the main contributor of Ca(2+), Mg(2+) and HCO(3) ions to the water. Gibbs diagram suggests rock-water interaction dominance and evaporation dominance which are responsible for the change in the quality of water in the study area. NaCl and mixed CaNaHCO(3) facies are two main hydrogeochemical facies of groundwater. Mathematical calculations and graphical plots of geochemical data reveal that the groundwater of Rameswaram Island is influenced by natural weathering of rocks, anthropogenic activities and seawater intrusion due to over exploitation. Weathering and dissolution of carbonate and gypsum minerals also control the concentration of major ions (Ca(+2), Mg(+2), Na(+) and K(+)) in the groundwater. The nutrient concentration of groundwater is controlled to a large extent by the fertilizers used in agricultural lands and aquaforms. Comparison of geochemical data shows that majority of the groundwater samples are suitable for drinking water and irrigation purposes.  相似文献   

15.
Groundwater level plays a significant role in coastal plains. Heavy pumping and excessive use of near-coast groundwater can increase the intrusion of seawater into the aquifers. In the present study, groundwater levels were measured at 59 groundwater wells at different times during pre- and post-irrigation seasons (April and September of the year 2012) in Çar?amba Plain, Turkey. To select the best method, two deterministic interpolation methods (inverse distance weighing (IDW) with the weights of 1, 2, and 3 and radial basis function (RBF) with spline with tension (SPT) and completely regularized spline (CRS)) and two stochastic methods (ordinary kriging (OK) with spherical, exponential, and Gaussian variograms) and cokriging (COK)) were compared and then the best interpolation method was used to evaluate the spatial distribution of groundwater levels in different seasons and seasonal changes. A total of nine different techniques were tested. Also, risky areas of seawater intrusion in coastal area were determined using the best methods for two periods. The performance of these interpolation methods is evaluated by using a validation test method. Statistical indices of correlation (R 2), mean absolute error (MAE), and root-mean-square error (RMSE) were used to select and validate the best methods. Comparisons between predicted and observed values indicated RBF as the optimal method for groundwater level estimation in April and September. When the best method RBF and the worst method IDW were compared, significant differences were observed in the spatial distribution of groundwater. Results of the study also revealed that excessive groundwater withdrawals during the post-irrigation season dropped the groundwater levels up to 2.0 m in some sections. With regard to seawater intrusion, 9,103 ha of land area was determined to be highly risky and risky.  相似文献   

16.
There has been increasing interest in uranium mining in the United States via in situ recovery techniques. One of the main environmental concerns with in situ uranium mining is the potential for spreading groundwater contamination. There is a dearth of detailed analysis and information regarding the outcome of in situ uranium mine remediation to ascertain the environmental impacts. Regulatory measurements performed at a Wyoming in situ uranium mine were collected and analysed to ascertain the efficacy of remediation and potential long term environmental impact. Based on the measurements, groundwater sweeping followed by reverse osmosis (RO) treatment proved to be a highly efficient method of remediation. However, injection of a reductant in the form of H(2)S after groundwater sweeping and RO did not further reduce the aqueous concentration of U, Mn, or Fe. Low concentrations of target species at monitoring wells outside the mined area appear to indicate that in the long term, natural attenuation is likely to play a major role at reductively immobilizing residual (after remediation) concentrations of U(VI) thus preventing it from moving outside the mined area. Our analysis indicates the need for additional monitoring wells and sampling in conjunction with long term monitoring to better understand the impacts of the different remediation techniques.  相似文献   

17.
Serious problems are faced in several parts of the world due to the presence of high concentration of fluoride in drinking water which causes dental and skeletal fluorosis to humans. Nalgonda district in Andhra Pradesh, India is one such region where high concentration of fluoride is present in groundwater. Since there are no major studies in the recent past, the present study was carried out to understand the present status of groundwater quality in Nalgonda and also to assess the possible causes for high concentration of fluoride in groundwater. Samples from 45 wells were collected once every 2 months and analyzed for fluoride concentration using an ion chromatograph. The fluoride concentration in groundwater of this region ranged from 0.1 to 8.8 mg/l with a mean of 1.3 mg/l. About 52% of the samples collected were suitable for human consumption. However, 18% of the samples were having less than the required limit of 0.6 mg/l, and 30% of the samples possessed high concentration of fluoride, i.e., above 1.5 mg/l. Weathering of rocks and evaporation of groundwater are responsible for high fluoride concentration in groundwater of this area apart from anthropogenic activities including irrigation which accelerates weathering of rocks.  相似文献   

18.
Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na?+?Ca) and Cl/(Cl?+?HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F?=?100–400 mg/kg) and K-bentonites (F?=?2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.  相似文献   

19.
The impact of seawater intrusion was investigated using major hydrogeochemical ions to evaluate the origin of salinity in Sadras watershed located between Buckingham Canal and Bay of Bengal in the southeastern coast of India. From empirical data collected twice during pre- and post-monsoon seasons, it was found that groundwater was slightly acidic to mildly alkaline, and more than 44% of groundwater samples had EC > 3,000 ??S/cm in both the seasons. Results of principle component analysis (PCA) showed that Na?+?, Cl???, Mg2?+?, and SO $_{4}^{\,\, 2-}$ concentrations had the highest loading factor and the samples affected by saline/seawater were separated from the cluster. Hydrochemical processes that accompany the saline/seawater were identified using ionic changes. It was observed during sampling periods that the mixing due to saline/seawater intrusion varied from 4.82?C7.86%. Negative values of ionic change (e change) for Na?+? and K?+? decreased with the increasing fraction of seawater. Furthermore, salinity, sodium adsorption ratio, percentage of sodium Na (%), and exchangeable sodium percentage in well samples showed that groundwater was unsuitable for irrigation purposes.  相似文献   

20.
This study examines the uncertainty associated with two commonly used GIS-based groundwater vulnerability models, DRASTIC and EPIK, in assessing seawater intrusion, a growing threat along coastal urban areas due to overexploitation of groundwater resources. For this purpose, concentrations of Total Dissolved Solids (TDS) in groundwater samples at three pilot areas along the Eastern Mediterranean were compared with mapped vulnerability predictions obtained through DRASTIC and EPIK. While field measurements demonstrated high levels of groundwater salinity depending on the density of urbanization, both vulnerability assessment methods exhibited a limited ability in capturing saltwater intrusion dynamics. In the three pilot areas, DRASTIC was only able to predict correctly between 8.3 and 55.6% of the salinity-based water quality ranges, while EPIK's predictions ranged between 11.7 and 77.8%. This emphasizing that conventional vulnerability models perform poorly when anthropogenic impacts induce lateral flow processes such as seawater intrusion caused primarily by vertical groundwater extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号