首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以长沙某河库兼用型饮用水水源地一、二级保护区土壤为研究对象,于2018年8月采用网格布点法在一级和二级保护区分别布设3个和7个采样点,在水源地历史采样区布设5个采样点,探究土壤中Cd、Pb、Cr、Cu、Zn、Ni、Hg、As的含量分布及污染水平。结果表明:土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的含量均值分别为46.56、4.90、81.87、46.64、0.19、30.11、75.11、237.93 mg/kg。重金属元素含量均值超过农用地污染风险筛选值的样品占比排序为Cd (86.7%)>Zn (60%)>As (53.3%)>Cu (6.7%)=Pb (6.7%)。土壤中As、Cd、Cr、Cu、Hg、Ni、Pb、Zn的单因子污染指数分别为1.55、16.34、0.41、0.47、0.08、0.30、0.63、0.95,主要为Cd、As污染。研究区土壤重金属综合污染指数为11.71,属重污染等级。水源地一级保护区、二级保护区、历史采样区2018年、历史采样区2014年土壤重金属综合污染指数分别为20.41、14.94、1.98、1.17。后期应加强对该饮用水水源地土壤中Cd、Pb、Cu、Zn、As的污染控制和治理。  相似文献   

2.
为研究广东省某矿区开展生态修复多年后下游农田土壤的金属污染状况,选取该矿区下游某村周边农田土壤及灌溉水渠作为研究对象,对该区域采集了40个土壤表层样本和8个水体样本,利用Arcgis软件对农田土壤样品中As、Cu、Cd、Pb、Zn、Mn和Fe2O3的质量分数进行克里金空间插值,解析该区域农田土壤金属的空间分布特征;采用综合污染指数法和潜在生态风险指数法对该区域耕作层土壤中As、Cu、Cd、Pb、Zn和Mn进行风险评价。结果表明,40个土壤样品中As、Cd、Cu、Zn和Pb的超标率分别为77.5%、70%、87.5%、27.5%和67.5%,说明调查区域农田土壤污染属于多金属复合污染,且对农作物的生产和安全产生巨大的威胁。部分土壤样品中As、Pb和Cd含量超过了中国农用地土壤污染风险管制值,需采取严格管控措施。通过分析土壤金属的空间分布,发现土壤金属含量超标点位主要位于灌溉口与受污染河流周边,且含量与离灌溉口距离成反比。结合目前灌溉水样中的金属均未超标的情况,得出该区域农田土壤污染是由该矿区生态环境修复前所产生的含金属灌溉水导致土壤中金属的积累...  相似文献   

3.
高压密闭消解土壤砷、汞、铅、镉酸体系比较   总被引:5,自引:1,他引:4  
采用高压密闭消解系统消解土壤,氢化物发生-原子荧光光谱法(HG-AFS)测定As和Hg,石墨炉原子吸收光度法(GF-AAS)测定Pb和Cd,对比了不同消解酸体系对国家土壤标准参考样中As、Hg、Pb、Cd的消解效果。结果表明,盐酸-硝酸体系对As、Hg、Pb和Cd的消解平均回收率分别为26.1%、100.6%、69.7%、87.3%;硝酸-高氯酸-氢氟酸体系中As、Hg、Pb和Cd消解平均回收率分别为109.9%、84.7%、87.5%、90.1%;硝酸-双氧水体系对Hg、Pb、Cd消解平均回收率分别为104.8%、95.1%、93.3%,对As的回收率虽只有69.2%,但数据精密度最好。此外,从简化试验步骤,减少误差,提高检测效率及减少试验危险性等方面综合评价,认为硝酸-双氧水消解体系是采用高压密闭系统消解土壤重金属的最理想酸体系。  相似文献   

4.
鞍山市郊蔬菜基地土壤重金属污染状况调查   总被引:2,自引:0,他引:2  
通过对鞍山市郊蔬菜基地土壤中重金属含量的分析表明,所采集的菜地土壤中Cd的超标率为44.4%,Cu、Pb、Cr、As、Hg无超标现象。大田菜菜地土壤中As、Hg、Pb含量比大棚菜菜地略高,Hg、Pb、Cu、Cr、Cd含量超背景值。  相似文献   

5.
大宝山采矿活动对环境的重金属污染调查   总被引:1,自引:0,他引:1       下载免费PDF全文
调查了大宝山铁铜多金属矿床固体废弃物-水相互作用对环境的重金属污染,结果表明,矿床固体废弃物导致了水、土壤的重金属污染,污染元素主要有Cd、Cu、Pb、Zn等;重金属元素的水迁移强度由大至小顺序为Cr、Cu、Zn、Ni、Cd、As、Pb、Hg;元素的生物吸收系数由大至小顺序为Cd、Zn、Hg、Ni、Cu、Cr、As、Pb,虽然水稻糙米中的重金属含量未超过国家标准,但Cd、Cr两种元素含量已远远超出了植物中毒量的下限值.  相似文献   

6.
试验了高频电感耦合等离子体发射光谱法同时测定污水中Fe、Zn、Cu、Mn、Pb、Cd、As、Ca、Cr和Al等10种低含量元素的方法。方法的检测限能满足污水的测定要求,并具有较好的稳定性。10种元素的相对标准差均<5%,回收率在93%~101%之间。  相似文献   

7.
南京市某垃圾填埋场重金属污染现状调查   总被引:2,自引:0,他引:2       下载免费PDF全文
对南京市某垃圾填埋场的垃圾、土壤、植物、炉渣等样品中Cu、Pb、Cr、Zn、Cd、Hg、As、Sb、Mn重金属含量进行分析。结果表明,垃圾填埋场的填埋土中Cu、Zn、As3种重金属含量分别高出自然土壤背景值86%、250%,300%。潜在生态危害指数法评价的污染状况为:Cd、As〉Hg〉Cu〉Pb〉Cr、Zn;Cd和As的毒性贡献较大,存在极高的潜在生态风险。  相似文献   

8.
洞庭湖表层沉积物中重金属污染特征、来源与生态风险   总被引:6,自引:1,他引:5  
选择洞庭湖9个有代表性的样点,研究了洞庭湖表层沉积物中重金属的空间分布特征、主要来源与生态风险。结果表明,洞庭湖Cd、Hg、As、Cu、Pb、Cr的含量分别为0.60~20.70、0.090~0.640、10.4~83.7、17.9~70.9、16.9~95.8、59.0~199.0 mg/kg,Cd、As出现超过土壤环境质量三级标准的现象,是主要重金属污染物;Cd、Hg的空间分布相似,表现为南洞庭湖区西洞庭湖区东洞庭湖区;As、Cu、Pb、Cr的空间分布相似,表现为南洞庭湖区东洞庭湖区西洞庭湖区。相关分析结果显示:As、Cd、Hg、Cu、Pb之间呈显著正相关,Cr与其它重金属之间没有显著的相关性。主成分分析结果表明,第一主成分的Hg、As、Cd主要受工矿业采冶支配,第二主成分的Cr、Pb、Cu主要与生活污水排放和农业生产有关。沉积物质量基准法初步评价结果表明,洞庭湖Cd、Hg、As、Cu、Pb、Cr等重金属均具有引起较低生态风险的可能性,部分点位Cd、As、Cr具有引起较高生态风险的可能性。受Cd、As含量较高的影响,南洞庭湖区具有较高的生态风险。  相似文献   

9.
于2017年1、4、7、10月在南京市主城区采集了大气PM2.5样品,用BCR法对PM_(2.5)中重金属进行连续提取,采用电感耦合等离子体-质谱法进行测定,分析重金属在颗粒物中不同形态和分布特征。结果表明,PM_(2.5)中9种重金属质量比排序为:Fe Zn Pb Mn Cu Cr As Ni Cd。Zn、Pb、Cd、Cu、Mn、As主要分布在弱酸提取态; Ni在弱酸提取态、可氧化态和残渣态中分布较均匀,占比26%~37%;而Fe、Cr主要以残渣态存在,分布比例分别为71%和54%。PM_(2.5)中Zn的生物有效性系数 0.8,属生物可利用性元素,表明其在环境中迁移能力最强,其余8种重金属生物有效性系数为0.2~0.8。  相似文献   

10.
采用现场采样与室内测试方法测定了某大型集中式饮用水源地一级保护区土壤中Cd、Hg、As、Pb、Cr、Cu、Zn和Ni的含量,利用污染指数法、地累积指数法和潜在生态指数法对其土壤环境质量进行了评价。结果表明,上述8种重金属都存在不同程度的超标,其中Cd超标最为严重。地累积指数法评价结果表明,研究区只有Cd、Hg存在一定污染,污染程度分别为中度污染到强污染、中度污染和中度污染到强污染。潜在生态指数法结果表明:研究区土壤样品Cd的单因子潜在生态风险指数最高,轻微、中等和较高风险等级中所占比例分别为44.7%、23.7%、31.6%;其次为Hg,有89.5%的土壤样品中Hg处于轻微生态风险水平,10.5%的土壤样品处于中等生态风险水平;土壤样品中As、Pb、Cu、Ni、Zn、Cr都处于轻微生态风险水平。Cd是研究区最主要的污染和生态风险因子,其次是Hg,说明集中式饮用水源地保护区土壤已受到个别重金属的影响。虽然目前尚不存在饮用水源地水体受污染问题,但应引起高度关注。  相似文献   

11.
In an effort to determine vehicular impact on soil quality, soil samples were collected from three different zones (Pahalgam, Batakote, and Chandanwari) in Pahalgam forest ecosystem. Results showed that a significant decrease in moisture content, organic carbon, available nitrogen, and potassium was observed in nearby road side soils. However, pH was observed to be on neutral side and available phosphorus recorded high concentration. The concentration of heavy metals Pb2+, Cu2+, Zn2+, Ni2+, and Cd2+ estimated was also significantly high. Furthermore, concentration of Pb2+ at high vehicular load subzones was observed to be highest (1.168 mg/Kg) followed by Zn2+ (0.896 mg/Kg), Ni2+ (0.649 mg/Kg), Cu2+ (0.415 mg/Kg), and Cd2+ (0.079 mg/Kg). An inter-zone analysis revealed that the concentration of the heavy metals (Pb2+?>?Ni2+?>?Cd2+) was observed to follow the trend, Z-I?>?Z-II?>?Z-III. Variation along the temporal gradient and the impact on soil qualities were notably higher in summer. Vehicular pollution to a great extent impacts physico-chemical characteristics and more interestingly adds substantial concentration of heavy metals in soils.  相似文献   

12.
Here, we present a new toxicity bioassay (CO2-TOX), able to detect toxic or inhibitory compounds in water samples, based on the quantification of Pseudomonas putida KT2440 CO2 production. The metabolically produced CO2 was measured continuously and directly in the liquid assay media, with a potentiometric gas electrode. The optimization studies were performed using as a model toxicant 3,5-DCP (3,5-dichlorophenol); later, heavy metals (Pb2+, Cu2+, or Zn2+) and a metalloid (As5+) were assayed. The response to toxics was evident after 15 min of incubation and at relatively low concentrations (e.g., 1.1 mg/L of 3,5-DCP), showing that the CO2-TOX bioassay is fast and sensitive. The EC50 values obtained were 4.93, 0.12, 6.05, 32.17, and 37.81 mg/L for 3,5-DCP, Cu2+, Zn2+, As5+, and Pb2+, respectively, at neutral pH. Additionally, the effect of the pH of the sample and the use of lyophilized bacteria were also analyzed showing that the bioassay can be implemented in different conditions. Moreover, highly turbid samples and samples with very low oxygen levels were measured successfully with the new instrumental bioassay described here. Finally, simulated samples containing 3,5-DCP or a heavy metal mixture were tested using the proposed bioassay and a standard ISO bioassay, showing that our test is more sensible to the phenol but less sensible to the metal mixtures. Therefore, we propose CO2-TOX as a rapid, sensitive, low-cost, and robust instrumental bioassay that could perform as an industrial wastewater-process monitor among other applications.  相似文献   

13.
Constructing various green wetland examples for mangrove wetland systems is a useful way to use natural power to remediate the polluted wetlands at intertidal zones. Metallothioneins (MT) are involved in heavy metal tolerance, homeostasis, and detoxification of intracellular metal ions in plants. In order to understand the mechanism of heavy metal uptake in Aegiceras corniculatum, we isolated its metallothionein gene and studied the MT gene expression in response to heavy metals contamination. Here, we report the isolation and characterization of MT2 genes from young stem tissues of A. corniculatum growing in the cadmium (Cd) and lead (Pb) polluted wetlands of Quanzhou Bay, southeast of China. The obtained cDNA sequence of MT is 512 bp in length, and it has an open reading frame encoding 79 amino acid residues with a molecular weight of 7.92 kDa and the theoretical isoelectric point of 4.55. The amino acids include 14 cysteine residues and 14 glycine residues. It is a non-transmembrane hydrophilic protein. Sequence and homology analysis showed the MT protein sequence shared more than 60 % homology with other plant type 2 MT-like protein genes. The results suggested that the expression level of MT gene of A. corniculatum young stems induced by a certain range concentration of Cd2+ and Pb2+ stresses (0.2 mmol L?1 Pb2+, 1 mmol L?1 Pb2+, 0.2 mmol L?1 Pb2+, and 40 μmmol L?1 Cd2+; 1 mmol L?1 Pb2+ and 40 μmol L?1 Cd2+) compared with control might show an adaptive protection. The expression levels of MT gene at 20 h stress treatment were higher than those at 480 h stress treatment. The expression levels of MT gene with 0.2 mmol L?1 Pb2+ stress treatment were higher than those with 0.2 mmol L?1 Pb2+ and 40 μmol L?1 Cd2+ stress treatment, and the MT gene expression levels with 1 mmol L?1 Pb2+ treatment were higher than those with 1 mmol L?1 Pb2+ and 40 μmol L?1 Cd2+ treatment. There exists an antagonistic action between Pb2+ and Cd2+ in the MT metabolization of A. corniculatum.  相似文献   

14.
An on-site solid-phase extraction, consisting of the sorption, the separation and the elution function units, was designed for in situ preconcentration of heavy metals ions. The D401 resin powder was employed as sorbent to capture Pb2+, Cu2+, Zn2+, Cd2+, Co2+, and Ni2+, and then they desorbed with 2 mol/L nitric acid as eluent. Under the optimized conditions, these heavy metals ions in West Lake, Taihu Lake, and Yangtze River of China were captured and then determined by ICP-OES with the recovery of 92.5% to 111.5%. The on-site solid-phase extraction achieved a quick preconcentration of heavy metals to avoid the transport and storage of a large volume water sample. It is suitable for in situ monitoring of water quality in mountains, tablelands or other remote areas.  相似文献   

15.
Effects of Cu2+, Pb2+ and Zn2+ were studied on voltage-activated Na-, Ca-, and K-currents in snail neurons. It was found that: 1. In normal physiological saline Cu2+, Pb2+ and Zn2+ ions exerted complex changes on the total ionic currents; 2. All three metal ion have depressed the inward Na-currents but with different K D , moreover Pb 2+ increased Na-current at low concentrations (5 M); 3. The inward Ca-current was also reduced. The sequence of the blocking effect of metals was different: Pb>Cu>Zn, however the steady-state inactivation was influenced only by Cu2+; 4. Outward currents were decreased in all neurons by Cu2+, but the effects of Pb2+ and Zn2+ were either depression or enhancement in different indentified neurons; 5. The possibility of binding heavy metals to wide variety of membrane proteins and the observed effects on different ionic channels suggest that the metal effect is complex and cannot be taken as a specific one to a single channel type or site of location.  相似文献   

16.
The degradation of some organophosphorus pesticides (OPPs) in the presence of metal ions was studied by 31P-NMR spectroscopy. Both 31P-NMR and gas chromatography/mass spectroscopy results were used in order to determine the nature of metabolites formed after degradation. The degraded organophosphorus pesticide were investigated for chlorpyrifos and phoxim in the presence of several metal ions including Hg2+, Cu2+, Cd2+, Ni2+, Pb2+, and Ag+. 31P-NMR results indicated Ag+ and Hg2+ ion promoted degradation of OPPs and other metal ions formed complex with OPPs and cannot degrade OPPs. We found that the degradation of chlorpyrifos and phoxim with Ag+ or Hg2+ led to the formation of O,O-diethyl-O-methyl phosphorothionate, (C2H5O)2(CH3O)PS, at metal ion/pesticide mole ratios ≤1.0 and completely decomposed at a higher mole ratio of 10. Finally, the method was successfully applied to the degradation study of a number of technical and formulated pesticides in the presence of Ag+ ion at a metal ion/pesticide mole ratio of 10.  相似文献   

17.
The adsorption of metals from aqueous solutions of Pb2+, Zn2+ and Mg2+ on naturally occurring pyrolusite have been studied. The chemical stability of the pyrolusite has been determined in NaOH, H2SO4, HNO3, HCl, NaCl and NK4Cl solutions of various concentrations. Adsorption of the metal ions followed the order Pb2+>Zn2+>Cd2+.The maximum adsorption of Pb2+ (100%) occurred at pH 7. the relation between the amount of Pb2+ adsorbed per unit weight of pyrolusite and the concentration of Pb2+ at equilibrium follows the Freundlich adsorption isotherm.The efficiency of pyrolusite has been demonstrated by removing lead from synthetic waste water. 100% and 96% removal of lead have been achieved from synthetic waste water containing 5 mg l–1 and 120 mg l–1 of Pb2+ respectively at pH 7. The results of these studies suggest that pyrolusite might provide an economical method for the removal of lead from industrial waste water.  相似文献   

18.
The interaction of heavy metals (HgCl2, CdCl2, CuCl2, PbCl2 and ZnCl2) and neurotransmitters (ACh, 5HT and DA) was studied on the excitable membrane of identified neurons of Lymnaea stagnalis and Helix pomatia. It was shown that,
  1. The excitability and chemosensitivity of molluscan neurons were modified under the influence of the heavy metals Hg2+, Cd2+, Cu2+, Pb2+ and Zn2+.
  2. Change in excitability to transmitters occurred as a potentiation or depression of the evoked response both in duration of membrane polarization and in frequency of spike activity.
  3. The chemosensitivity changes in various ways, namely:
  4. excitatory effect was totally eliminated;
  5. one component of the effect was depressed.
  6. Different neurons may show different reactions to the same heavy metal.
  7. There were differences in the effects of various heavy metals. Hg2+ has a more generalized effect than Cd2+; Cu2+, Pb2+ and Zn2+ were less effective in a number of neurons. The heavy metal effect was dose dependent, too.
  8. Both inward and outward currents, which were evoked by neurotransmitters or voltage induced, were modified in most of the tested neurons. Both an increase and decrease of the membrane permeability occurred in different neurons in response to the same or different heavy metals.
  9. The changes can be interpreted as a result of
  10. direct effect on specific ionic channels;
  11. modification of receptors binding ACh, 5HT, or DA;
  12. modification of intracellular processes responsible for the regulation of membrane permeability.
  相似文献   

19.
A total of 144 isolates of Pseudomonas spp. (48 each from the Yamuna River water, wastewater irrigated soil and groundwater irrigated soil) were tested for their resistance against certain heavy metals and antibiotics. Minimum inhibitory concentrations (MICs) of Hg2?+?, Cd2?+?, Cu2?+?, Zn2?+?, Ni2?+?, Pb2?+?, Cr3?+? and Cr6?+? for each isolate were also determined. A maximum MIC of 200 ??g/ml for mercury and 3,200 ??g/ml for other metals were observed. The incidences of metal resistance and MICs of metals for Pseudomonas isolates from the Yamuna water and wastewater irrigated soil were significantly different to those of groundwater irrigated soil. A high level of resistance against tetracycline and polymyxin B (81.2%) was observed in river water isolates. However, 87.5% of Pseudomonas isolates from soil irrigated with wastewater showed resistance to sulphadiazine, whereas 79.1% were resistant to both ampicillin and erythromycin. Isolates from soil irrigated with groundwater exhibited less resistance towards heavy metals and antibiotics as compared to those of river water and wastewater irrigated soil. Majority of the Pseudomonas isolates from water and soil exhibited resistance to multiple metals and antibiotics. Resistance was transferable to recipient Escherichia coli AB2200 strains by conjugation. Plasmids were cured with the curing agent ethidium bromide and acridine orange at sub-MIC concentration.  相似文献   

20.
The ability of cadmium uptake by metal-resistant yeast, Candida tropicalis, from the liquid medium and wastewater was evaluated. The minimum inhibitory concentration of Cd2?+? against C. tropicalis was 2,500 mg L???1. The yeast also showed tolerance toward Zn2?+? (1,400 mg L???1), Ni2?+? (1,000 mg L???1), Hg2?+? (1,400 mg L???1), Cu2?+? (1,000 mg L???1), Cr6?+? (1,200 mg L???1), and Pb2?+? (1,000 mg L???1). The yeast isolate showed typical growth curves, but lag and log phases extended in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 8. The metal processing ability of the isolate was determined in a medium containing 100 mg L???1 of Cd2?+?. C. tropicalis could decline Cd2?+? 70%, 85%, and 92% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2?+? 40% and 78% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and nonprotein thiol levels by 135% and 134% at 100-mg L???1 concentration, respectively. An increase in the synthesis of GSH is involved in metal tolerance, and the presence of increasing GSH concentrations may be a marker for high metal stress in C. tropicalis. C. tropicalis, which is resistant to heavy metal ions and is adaptable to the local environmental conditions, may be employed for metal detoxification operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号