首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
东营春季PM10中有机碳和元素碳的污染特征及来源   总被引:2,自引:1,他引:1  
2010年4月采集了东营市大气PM10样品,测定了PM10的浓度,并采用IMPROVE-TOR方法准确测量了样品中的8个碳组分.结果表明,采样期间,东营市大气PM10的平均浓度为(147.02±56.22) μg/m3;PM10中有机碳(0C)、元素碳(EC)浓度平均值分别为11.82、3.68 μg/m 3;PM10中OC和EC显著相关,表明OC、EC的来源相同;所有采样点PM10中OC/EC均大于2.15,表明存在二次有机碳(SOC)的贡献;PM10中SOC平均质量浓度是3.91 μg/m3,占OC质量浓度的33.08%;通过计算PM10中8个碳组分丰度,初步判断东营市颗粒物中碳的主要来源是汽车尾气、道路扬尘和燃煤.  相似文献   

2.
为研究大同市大气颗粒物质量浓度与水溶性离子组成特征,于2013年2、7、9、12月,分别对大同市及其对照点庞泉沟国家大气背景点进行了PM2.5及PM10的采样,通过超声萃取-IC法测定了样品中的9种水溶性离子,结果表明,大同市大气颗粒物污染1、4季度重于2、3季度,PM2.5季度均值全年均未超标,PM10仅第1季度超标1.4倍,污染状况总体良好,PM2.5与PM10相关系数R为0.75,说明大同市颗粒物污染有较为相近的来源,且不同季节均以粗颗粒物为主;大同市PM2.5中水溶性离子浓度分布为SO2-4、NO-3、NH+4Cl-、Ca2+K+、Na+F-、Mg2+,PM10中Ca2+浓度仅次于SO2-4、NO-3,控制扬尘将有效降低PM10的浓度;PM2.5及PM10中的9种水溶性离子在不同季度的浓度与颗粒物浓度分布规律类似,1、4季度较高,2、3季度较低;由阴阳离子平衡计算结果可知,相关性方程的斜率K为1.045,表明大同市大气颗粒物中阳离子相对亏损,大气细粒子组分偏酸性。NO-3与SO2-4浓度比值均小于1,大同市以硫酸型污染为主,大气中的SO2-4主要来源于人类活动排放。  相似文献   

3.
天津市PM10和PM2.5中水溶性离子化学特征及来源分析   总被引:8,自引:3,他引:5       下载免费PDF全文
2011年5月—2012年1月在天津市南开区设立采样点,采集大气中PM10和PM2.5样品。采用离子色谱法测定颗粒物中水溶性无机阴离子、阳离子成分,分析其主要组成、季节变化及污染来源。结果表明,天津市PM10中离子平均浓度为71.2μg/m3,占PM10质量浓度的33.7%。PM2.5中离子平均浓度为54.8μg/m3,占PM2.5质量浓度的39.6%。NH+4、SO2-4、NO-3等二次离子含量较大,且夏季含量均为最高。颗粒物总体呈酸性,PM10中∑阳离子/∑阴离子平均值为0.92,PM2.5中该比值为0.75。来源分析发现,PM10可能主要来源于海盐、工业源、二次反应及土壤和建筑尘等,PM2.5则主要来源于海盐污染源、二次反应及生物质燃烧。  相似文献   

4.
一种评估烟花爆竹燃放对大气PM2.5影响的新方法   总被引:5,自引:1,他引:4       下载免费PDF全文
基于北京市空气质量自动监测系统2013年2月常规污染物监测数据,提出了定量估算烟花爆竹燃放对大气PM2.5影响的污染物相对比值(PM2.5/CO)法。利用该方法研究表明,2013年北京除夕烟花爆竹燃放使PM2.5单站1小时平均浓度最大增加709μg/m3(石景山古城监测点);全市24小时平均浓度增加88μg/m3,达到159μg/m3,空气质量由良好升级为重度污染。元宵节夜间烟花爆竹燃放使PM2.5单站1小时平均浓度最大增加469μg/m3(海淀万柳监测点),全市24小时平均浓度增加54μg/m3。除夕夜、元宵夜全市平均烟花爆竹PM2.5浓度超过75μg/m3的时间分别为5、7 h,达到峰值后半衰期分别为0.9、1.7 h。城区烟花爆竹PM2.5浓度高于郊区,并可导致下风向郊区的PM2.5浓度显著增加。除夕、元宵节北京市区烟花爆竹排放PM2.5总量分别约为1.91×105kg、1.17×105kg。  相似文献   

5.
兰州市大气颗粒物污染特征分析   总被引:5,自引:3,他引:2       下载免费PDF全文
对兰州市2011—2012年大气颗粒物污染状况进行了研究,在主导风向上设置采样点,分别连续监测PM10、TSP、风速、能见度。结果表明,兰州市颗粒物浓度的峰值出现在2—4月,TSP浓度最大值可达到2.465 mg/m3,PM10最大值可达到2.079 mg/m3;颗粒物污染的季节性强,以3、4月出现的频率最高,发生时间具有随机性;2012年兰州市全年颗粒物(PM10和TSP)平均小时浓度值低于2011年,沙尘天气发生频次较2011年有所降低,环境空气质量有所改善。  相似文献   

6.
2011年南京市春季大气颗粒物污染特征分析   总被引:2,自引:0,他引:2  
2011年江苏省环境监测中心对南京市鼓楼、建邺、栖霞3区8个采样点采集了TSP和PM10样品,进行颗粒物质量浓度、水溶性离子、无机元素以及碳成分分析。结果表明该市春季大气颗粒物污染以PM10为主,不同区域颗粒物污染特点不一;水溶性离子以Ca2+、NO3-及SO2-4居多;无机元素以Ca、Fe、Al为主,Pb与Zn浓度较Ni与V高;市内EC浓度较高,可能与裸露堆煤场有关。有关研究结果提交南京市政府部门,供决策时参考。  相似文献   

7.
珠三角地区不同季节颗粒物数谱分布特性   总被引:4,自引:1,他引:3  
基于珠三角大气超级站不同季节3 nm~10μm颗粒物数谱分布在线监测数据,系统分析不同季节颗粒物数浓度、表面积浓度与体积浓度的水平与构成及数谱分布日变化规律,揭示了珠三角地区颗粒物数谱分布特征。结果表明,冬季、春季和秋季珠三角大气超级站总颗粒物数浓度分别为2.17×104、1.97×104、2.24×104个/立方厘米,总颗粒物表面积浓度分别为2.98×103、2.28×103、2.78×103μm2/cm3,总颗粒物体积浓度分别为1.33×102、1.04×102、1.40×102μm3/cm3。颗粒物总数浓度中,爱根核模和积聚模态颗粒物是主要贡献者,在总数浓度的比例均达到40%以上;总颗粒物表面积浓度中,积聚模态颗粒物是主要贡献者,月平均比例高达88%以上;总颗粒物体积浓度中,积聚模态颗粒物也是主要贡献者,月平均贡献为65%~80%,其次为粗粒子模贡献较大,比例为20%~30%。积聚模态颗粒物的重要贡献较好地体现了超级站的区域性。冬季、春季和秋季颗粒物数浓度平均日变化趋势均为7:00~9:00和18:00~20:00存在较高的爱根核模态颗粒物数浓度,意味着机动车排放对细颗粒物污染的影响较显著。10月颗粒物数谱分布平均日变化中存在明显的颗粒物增长过程,体现了新粒子生成事件的重要影响。  相似文献   

8.
石家庄市春节期间大气颗粒物有机碳和元素碳的变化特征   总被引:3,自引:2,他引:1  
为研究石家庄市大气颗粒物的污染特征及其来源,于2013年2月6—19日春节期间在石家庄市采集大气颗粒物TSP、PM10、PM2.5样品,对其有机碳、元素碳进行分析测定。结果表明,石家庄TSP、PM10、PM2.5日平均质量浓度分别为389、330、245μg/m3,颗粒物污染严重;碳组分在颗粒物中占有较大比重,且随着粒径的减少,碳组分比重逐渐增加;存在不严重的次生有机碳污染;OC与EC的相关系数较高,说明两者有较为相似的污染源,主要为燃煤、机动车排放源。各种气象条件对PM2.5、OC、EC浓度和OC/EC的变化都有不同程度的影响。  相似文献   

9.
宁波PM10中有机碳和元素碳的季节变化及来源分析   总被引:5,自引:2,他引:3       下载免费PDF全文
为了探讨宁波市大气颗粒物中浓度水平与季节变化,2010年1、5、8、11月分季节采集了宁波市大气中PM10样品,在宁波连续观测了PM10以及有机碳(OC)、元素碳(EC)的浓度变化,并探讨宁波全年各季碳气溶胶污染变化特征;PM10中OC和EC相关性较好,说明OC与EC的来源相同,各采样点PM10中OC/EC的各季均值大部分超过2.0,表明宁波空气中存在一定的二次污染。宁波秋季SOC占OC含量高于其他季节。从PM10中8个碳组分丰度初步判断宁波市颗粒物中碳的主要来源是汽车尾气、道路扬尘及燃煤。  相似文献   

10.
采集澳门地区不同区域大气PM10样品,根据单颗粒图像分析方法分析了PM10的粒径分布,计算了各采样点PM10粒度分布的分形维数,分析讨论了PM10粒度分布分形维数的变化与粒度分布的关系,分析了粒度分布分形维数表征的澳门大气PM10不同采样点、不同季节的粒度整体分布及其影响因素之间的关系。结果表明,澳门地区PM10粒度分布的分形维数在2.05~3.95之间,夏季PM10的粒度分布分形维数(2.88)大于冬季(2.63),表明夏季PM10的粒度普遍较冬季的细。同一季节不同区域大气PM10的粒度也有较大变化,夏季时,澳门岛的总体颗粒物、矿物颗粒和烟尘颗粒物的分形维数较氹仔岛的偏大,即澳门岛的颗粒物比氹仔岛偏细,而冬季则相反,冬季时,澳门岛的总体颗粒物、矿物颗粒和烟尘颗粒物的分形维数较氹仔岛的偏小。  相似文献   

11.
This study monitored atmospheric pollutants during high wind speed (> 7 m s−1) at two sampling sites: Taichung Harbor (TH) and Wuci traffic (WT) during March 2004 to January 2005 in central Taiwan. The correlation coefficient (R 2) between TSP, PM2.5, PM2.5−10 particle concentration vs. wind speed at the TH and WT sampling site during high wind speed (< 7 m s−1) were also displayed in this study. In addition, the correlation coefficients between TSP, PM2.5 and PM2.5−10 of ionic species vs. high wind speed were also observed. The results indicated that the correlation coefficient order was TSP > PM2.5−10 > PM2.5 for particle at both sampling sites near Taiwan strait. In addition, the concentration of Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+ were also analyzed in this study.  相似文献   

12.
Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5–10. The concentration distribution trend between TSP, PM2.5, PM2.5–10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl, NO3 , SO4 2−, NH4 +, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study.  相似文献   

13.
An air quality sampling program was designed and implemented to collect the baseline concentrations of respirable suspended particulates (RSP = PM10), non-respirable suspended particulates (NRSP) and fine suspended particulates (FSP = PM2.5). Over a three-week period, a 24-h average concentrations were calculated from the samples collected at an industrial site in Southern Delhi and compared to datasets collected in Satna by Envirotech Limited, Okhla, Delhi in order to establish the characteristic difference in emission patterns. PM2.5, PM10, and total suspended particulates (TSP) concentrations at Satna were 20.5 ± 6.0, 102.1 ± 41.1, and 387.6 ± 222.4 μg m−3 and at Delhi were 126.7 ± 28.6, 268.6 ± 39.1, and 687.7 ± 117.4 μg m−3. Values at Delhi were well above the standard limit for 24-h PM2.5 United States National Ambient Air Quality Standards (USNAAQS; 65 μg m−3), while values at Satna were under the standard limit. Results were compared with various worldwide studies. These comparisons suggest an immediate need for the promulgation of new PM2.5 standards. The position of PM10 in Delhi is drastic and needs an immediate attention. PM10 levels at Delhi were also well above the standard limit for 24-h PM10 National Ambient Air Quality Standards (NAAQS; 150 μg m−3), while levels at Satna remained under the standard limit. PM2.5/PM10 values were also calculated to determine PM2.5 contribution. At Satna, PM2.5 contribution to PM10 was only 20% compared to 47% in Delhi. TSP values at Delhi were well above, while TSP values at Satna were under, the standard limit for 24-h TSP NAAQS (500 μg m−3). At Satna, the PM10 contribution to TSP was only 26% compared to 39% in Delhi. The correlation between PM10, PM2.5, and TSP were also calculated in order to gain an insight to their sources. Both in Satna and in Delhi, none of the sources was dominant a varied pattern of emissions was obtained, showing the presence of heterogeneous emission density and that nonrespirable suspended particulate (NRSP) formed the greatest part of the particulate load.  相似文献   

14.
应用卫星遥感影像结合无人机现场核查数据,对2020年江苏省各设区市主城区工地和裸地2类扬尘源的时空分布变化和污染、管控情况开展了连续性监测,为生态环境监测部门业务化应用提供了思路和方法.研究结果显示,遥感解译精度优于95%,扬尘源数量、面积均呈上升趋势,至第4季度总数达1760个、总面积162.53 km2,总体管控情...  相似文献   

15.
杭州市大气污染物排放清单及特征   总被引:15,自引:9,他引:6  
以杭州市区为研究区域,通过调查整合多套污染源数据库及其他统计资料,研究文献报道及模型计算的各种污染源排放因子,获得杭州市区各行业PM10、PM2.5、SO2、NOx、CO、VOCs、NH3等污染物的排放量,建立了杭州市区2010年1 km×1 km大气污染物排放清单。结果表明,2010年杭州市区PM10、PM2.5、SO2、NOx、CO、VOCs和NH3的排放总量分别为7.96×104、4.02×104、7.23×104、8.98×104、73.90×104、39.56×104、3.32×104t。从排放源的行业分布来看,机动车尾气排放是杭州市区大气污染物最重要排放源之一,对PM10、PM2.5、NOx、CO和VOCs的贡献分别达到14.4%、27.1%、40.3%、21.4%、31.1%。道路扬尘、电厂锅炉、工业炉窑、植被、畜禽养殖对不同污染物分别有着重要贡献,道路扬尘对PM10和PM2.5的贡献分别为44.6%和20.0%、电厂锅炉对SO2和NOx的贡献分别为37.0%和25.7%、工业炉窑对CO的贡献为41.5%、植被排放对VOCs的贡献为27.1%、畜禽养殖对NH3的贡献为76.5%。从空间分布来看,萧山区和余杭区对SO2、NH3和植被排放BVOC的贡献要显著高于主城区;而主城区机动车对PM2.5、NOx和VOCs的贡献分别达到36.3%、56.0%和47.4%,较市区范围内显著增加,表明机动车尾气排放已成为杭州主城区大气污染最重要的来源之一。  相似文献   

16.
采用石墨炉原子吸收分光光度法、双道原子荧光光谱法研究乌鲁木齐市采暖期前期与后期不同粒径大气颗粒物(TSP、PM_(10)、PM_5、PM_(2.5))中Hg、As、Zn、Pb、Ni等5种重金属元素的质量浓度,并对重金属污染水平进行评价。Hg质量浓度为0.3~5.7 ng/m3;As质量浓度为15.3~122.5 ng/m~3;Zn质量浓度为298.0~1 686.5 ng/m~3;Pb质量浓度为0.5~88.8 ng/m~3;Ni质量浓度为10.4~25.5 ng/m~3。Igeo计算得出采暖期后期的TSP、PM_(10)、PM_5、PM_(2.5)中各重金属Igeo值均高于采暖期前期,其中Hg元素为严重污染;富集因子分析得出Hg、Zn元素的EFi值大于10,说明这些元素是人为源贡献。通过研究乌鲁木齐市不同时期、不同粒径大气颗粒物中各种重金属污染状况,为乌鲁木齐大气污染治理提供科学支持。  相似文献   

17.
基于成都双流国际机场活动水平数据,采用排放因子法和计算模型等,编制了机场大气污染物排放清单,并完成了时空分配和不确定性分析,建立了高分辨率网格化排放清单。结果表明,成都双流国际机场标准起飞着陆(LTO)循环数为2.4×10~5次/a,CO、VOCs、NO_x、PM_(10)、PM_(2.5)、SO_2排放量分别为1.2×10~3、1.3×10~2、2.1×10~3、2.8×10、2.7×10、2.5×10~2t/a,且主要由飞机发动机排放;活动水平数据仅包括LTO循环数和地面保障设备两部分;污染物排放分布和跑道类型相关性较高;排放清单活动水平数据可靠性较高,而排放因子存在一定的不确定性。  相似文献   

18.
The objective of the study is to investigate seasonal and spatial variations of PM10 (particulate matter with aerodynamic diameter less than or equal to 10 μm) and TSP (total suspended particulate matter) of an Indian Metropolis with high pollution and population density from November 2003 to November 2004. Ambient concentration measurements of PM10 and TSP were carried out at two monitoring sites of an urban region of Kolkata. Monitoring sites have been selected based on the dominant activities of the area. Meteorological parameters such as wind speed, wind direction, rainfall, temperature and relative humidity were also collected simultaneously during the sampling period from Indian Meteorological Department, Kolkata. The 24 h average concentrations of PM10 and TSP were found in the range 68.2–280.6 μg/m3 and 139.3–580.3 μg/m3 for residential (Kasba) area, while 62.4–401.2 μg/m3 and 125.7–732.1 μg/m3 for industrial (Cossipore) area, respectively. Winter concentrations of particulate pollutants were higher than other seasons, irrespective of the monitoring sites. It indicates a longer residence time of particulates in the atmosphere during winter due to low winds and low mixing height. Spread of air pollution sources and non-uniform mixing conditions in an urban area often result in spatial variation of pollutant concentrations. The higher particulate pollution at industrial area may be attributed due to resuspension of road dust, soil dust, automobile traffic and nearby industrial emissions. Particle size analysis result shows that PM10 is about 52% of TSP at residential area and 54% at industrial area.  相似文献   

19.
This research paper aims at establishing baseline PM10 and PM2.5 concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM2.5) and coarser fractions (PM10-2.5) to PM10 fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM10 concentration was 304 μg/m3, which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM10 concentration was due to fine fraction (PM2.5) released by vehicular exhaust. The 24h average PM2.5 concentration was found 179 μg/m3, which is exceeded USEPA and EU standards of 65 and 50 μg/m3 respectively for the winter. India does not have any PM2.5 standards. The 24 h average PM10-2.5 concentrations were found 126 μg/m3. The PM2.5 constituted more than 59% of PM10 and whereas PM10-PM2.5 fractions constituted 41% of PM10. The correlation between PM10 and PM2.5 was found higher as PM2.5 comprised major proportion of PM10 fractions contributed by vehicular emissions.  相似文献   

20.
This study assessed concentration levels of particulate matter (PM) in the ambient environment of Ilorin metropolis, Nigeria, during haze episodes. Meteorological data (wind speed and direction, rainfall data, sunshine data, relative humidity and temperature) were obtained. Aerocet 531S particle counter (MetOne Instruments, USA) was used to measure four mass concentration ranges of PM (PM1.0, PM2.5, PM10 and the total suspended particles (TSP)) in 10 locations taking into consideration land use patterns. Surfer® version 8 (Golden Software LLC, USA) was used to model the spatial variation of particulate matter concentration levels using kriging interpolation griding method. Human exposure assessment was done using the total respiratory deposition dose (TRDD) estimates and statutory limit breach (SLB) approaches. The appearance of dominating weak southern atmospheric wind flow was observed as wind speed ranged from 0 to 6.811 m/s while solar radiation periods ranged from 0.3 to 3.5 h/day. The relative humidity of the metropolis ranged between 28 and 57%, while daily temperature was 15 to 36 °C. Highest concentration levels of PM measured were 73.4, 562.7, 7066.3 and 9907.8 μg/m3 for PM1.0, PM2.5, PM10 and TSP, respectively. Very strong negative correlations existed between the PM concentration levels and microclimatic parameters. Spatial variation of the concentration level as modelled using Surfer® version 8 indicated that particulate concentration level increases from south to north. Concentration levels of PM for the 24-h averaging period were generally above the 24-h threshold limit value set by the regulatory agencies for all the locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号