首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过2015年1月、4月、8月、11月对苏州工业园区大气中PM_(2.5)及Pb、Cr、Cd、As、Ni 5种元素质量浓度的监测,并采用《污染场地风险评估技术导则》(HJ 25.3—2014)中推荐模型对该5种元素通过呼吸途径引起的人体健康风险进行评价。结果表明,Pb、Cr、Cd、As、Ni 5种元素平均质量浓度分别为76.2 ng/m3、6.92 ng/m3、1.45 ng/m3、4.14 ng/m3和5.71 ng/m3,平均质量浓度从高到低依次为PbCrNiCdAs;5种元素的致癌风险与危害熵分别为6.89×10-15~6.84×10~(-12)和2.57×10~(-9)~4.80×10~(-7),分别低于可接受致癌风险水平(10-6)与可接受危害熵(1)。整体而言,苏州工业园区大气重金属污染程度相对较低。  相似文献   

2.
采用气相色谱-质谱法,于2016年9月和12月对南京市2个典型地区大气中16种多环芳烃(PAHs)的质量浓度进行分析,并开展了PAHs组成特征、来源解析及人体健康风险评价研究。结果表明,工业区(六合区)和生活区(江宁区)大气(气态和可吸入颗粒态)中16种PAHs的质量浓度分别为914.82和712.27 ng/m~3,苯并[a]芘毒性等效浓度分别为274.1和309.84 ng/m~3,且呈现冬季高、秋季低的特征。比值法源解析结果表明,燃煤污染是六合区PAHs污染主要来源,而江宁区主要表现为交通污染。人体健康风险评价结果表明,六合区和江宁区人群通过大气吸入PAHs的超额致癌风险分别为5.17×10~(-5)和5.85×10~(-5),均略高于可接受水平10~(-6)。  相似文献   

3.
重庆市春季不同功能区PM10中多环芳烃的污染特征   总被引:2,自引:2,他引:0  
2012年4月在重庆市4个不同功能区连续10 d同步采集了大气PM10环境样品,利用气相色谱-质谱法分析测定美国环保局16种优控多环芳烃(PAHs).结果显示,在重庆主城区PM10中检测到16种优控PAHs,总浓度(∑PAHs)范围为31.68~ 189.31 ng/m3,平均浓度为108.05 ng/m3.各个功能区大气PM10中PAHs总浓度存在明显差别:交通区(沙坪坝七中)154.47 ng/m3>工业区(大渡口区政府)132.92 ng/m3>居民区(南岸工商大学)105.58 ng/m3>对照区(缙云山风景区)39.16 ng/m3.根据典型污染来源中PAHs的特征比值综合判断,重庆市春季大气中PM10主要来源于燃煤和交通污染的混合源.  相似文献   

4.
杭州贴沙河微囊藻毒素污染特征及健康风险评价   总被引:1,自引:0,他引:1  
在2014年9月杭州贴沙河出现蓝藻异常增殖期间,利用固相萃取-液质联用法对水体中胞外微囊藻毒素(EMC)和总微囊藻毒素(TMC)进行监测。共检出以MC-LR为主的8种微囊藻毒素(MC)单体,TMC总的质量浓度为63.9 ng/L~1 090 ng/L,其中MC-LR质量浓度为31.6 ng/L~472 ng/L,毒性等效MC-LR浓度为51.8 ng/L~862 ng/L,检出的MC-LR浓度值均低于限值标准。采用USEPA推荐模型对水体中MC污染的健康风险进行评价。各批次水样中MC-LR的非致癌健康风险指数(HI)为0.03~0.39,毒性等效MC-LR的HI介于0.04和0.72之间,均低于基准值,说明贴沙河作为饮用水水源尚无明显的健康风险。  相似文献   

5.
采用气相色谱氮磷检测器法测定了某废弃农药厂土壤和地下水中有机磷农药(OPPs)的含量,并用美国环保署(USEPA)推荐的健康风险评价方法,对该场地土壤和地下水中OPPs引起的健康风险进行了初步评价。结果表明,土壤、地下水中∑OPPs的检出浓度范围分别为1.3~1 129μg/kg和48.0~149.2 ng/L,点位检出率分别为73%、100%。土壤和地下水中OPPs的非致癌总风险指数均小于1,致癌总风险指数均在10-4以下。根据USEPA的建议值,初步认为该场地土壤和地下水中OPPs不会对人体产生明显的健康危害。  相似文献   

6.
采集了南京市2012年冬季4个功能区的PM2.5、PM10、TSP样品,对不同粒径大气颗粒物中的颗粒态汞测试。结果表明,南京冬季大气颗粒物TSP中汞的质量浓度为49.26 pg/m3~257.14 pg/m3,平均质量浓度为161.27 pg/m3;PM10中汞的质量浓度为44.82 pg/m3~228.29 pg/m3,平均质量浓度为147.38 pg/m3;PM2.5中汞的质量浓度为35.98 pg/m3~178.58 pg/m3,平均质量浓度为104.10 pg/m3。不同功能区大气颗粒态汞质量浓度的分布趋势为:交通综合区>旅游区>住宿综合区>商业区。大气颗粒态汞60%以上存在于可吸入肺的PM2.5中,细颗粒物富集汞的能力比粗颗粒物强。  相似文献   

7.
采用石墨炉原子吸收分光光度法、双道原子荧光光谱法研究乌鲁木齐市采暖期前期与后期不同粒径大气颗粒物(TSP、PM_(10)、PM_5、PM_(2.5))中Hg、As、Zn、Pb、Ni等5种重金属元素的质量浓度,并对重金属污染水平进行评价。Hg质量浓度为0.3~5.7 ng/m3;As质量浓度为15.3~122.5 ng/m~3;Zn质量浓度为298.0~1 686.5 ng/m~3;Pb质量浓度为0.5~88.8 ng/m~3;Ni质量浓度为10.4~25.5 ng/m~3。Igeo计算得出采暖期后期的TSP、PM_(10)、PM_5、PM_(2.5)中各重金属Igeo值均高于采暖期前期,其中Hg元素为严重污染;富集因子分析得出Hg、Zn元素的EFi值大于10,说明这些元素是人为源贡献。通过研究乌鲁木齐市不同时期、不同粒径大气颗粒物中各种重金属污染状况,为乌鲁木齐大气污染治理提供科学支持。  相似文献   

8.
在克拉玛依市中心城区布设4个采样点,在供暖期和非供暖期分别同步采集4个点位大气中不同粒径的颗粒物,采用HPLC进行分析并计算2个采样期内PM_(10)和PM_(2.5)中多环芳烃(PAHs)的浓度和种类。结果表明:中心城区供暖期PM_(10)中PAHs浓度为56.19 ng/m3,PM_(2.5)中PAHs浓度为48.85 ng/m3;中心城区非供暖期PM_(10)中PAHs浓度为18.86 ng/m~3,PM_(2.5)中PAHs浓度为14.53 ng/m~3。不同采样期PM_(10)和PM_(2.5)中PAHs浓度变化趋势相同,均为供暖期明显大于非供暖期。中心城区供暖期大气颗粒物吸附的PAHs以4环以下的组份为主,非供暖期则是5~6环的高环数组份偏多。分析结果表明克拉玛依市中心城区供暖期颗粒物中PAHs来源于燃煤排放叠加机动车排放,与中心城区集中供热锅炉关系密切;非供暖期则是以机动车排放污染为主。  相似文献   

9.
株洲夏季大气中气态总汞浓度特征   总被引:1,自引:1,他引:0  
为研究株洲市夏季优良天气下大气中气态总汞(TGM)的浓度特征,于2013年8月利用大气汞分析仪(2537X,加拿大)进行了20 d的连续在线观测。结果显示,实验期间株洲市大气TGM的平均浓度为(4.20±3.37)ng/m3,中值浓度为3.40 ng/m3,高于背景地区和沿海城市,略低于国内其他重点城市。晴天、阴雨天TGM浓度分别为3.59、7.96 ng/m3。晴天TGM浓度具有一定日变化规律,最高值出现在早上7:00~9:00,之后逐渐降低,17:00出现最低值;TGM白天和夜间浓度分别为3.57、3.62 ng/m3,昼夜变化不大。晴天TGM与一次污染物SO2、CO、NO2具有显著的正相关性,与O3呈显著负相关性。株洲市夏季主导风向为东南风,该方向没有明显污染源,西北方向风向频率较低,但TGM浓度明显升高,其主要来源可能是位于西北方向的清水塘工业区。  相似文献   

10.
为了解兰州市大气PM2.5中金属元素的污染水平和分布,于2013年冬季和春季在兰州市区4个在线监测点进行PM2.5样品采集,利用ICP-MS分析金属元素浓度。结果表明,Pb、B元素含量高于200 ng/m3,V、Fe元素含量在100~200 ng/m3,其余元素含量低于100 ng/m3,其中Pb含量最高,平均含量达到373.8 ng/m3.各监测点元素含量在冬季和春季各有不同,整体上是冬季高于春季。金属元素在兰州市区的空间分布与兰州市工业排放和气象因素有关,工业排放为主导因素。  相似文献   

11.
南京市大气颗粒物中多环芳烃变化特征   总被引:4,自引:2,他引:2  
逐月采集南京市大气中不同粒径的颗粒物,采用HPLC分析了2010年每个月PM_(10)和PM_(2.5)颗粒物样品中的多环芳烃(PAHs)的种类和浓度水平。结果表明:PM_(10)中PAHs年均值为25.07 ng/m~3,范围为11.03~53.56 ng/m3;PM_(2.5)中PAHs年均值为19.04 ng/m~3,范围为10.82~36.43 ng/m~3。PM_(10)和PM_(2.5)中PAHs总体浓度有着相似的变化趋势,呈现凹形变化曲线;在南京市大气颗粒物中吸附的PAHs大部分以5~6环的高环数组分为主,大部分PAHs和∑PAHs的相关性较好,年度变化幅度不大,分析结果表明,颗粒物中PAHs的来源与稳定的排放源相关,机动车排放不容忽视,与北方城市燃煤污染有着较大的区别。  相似文献   

12.
In this study, ambient TSP, PM10, and PM2.5 in a residential area located in the northern part of Seoul were monitored every other month for 1 year from April 2005 to February 2006. The monthly average levels of TSP, PM10, and PM2.5 had ranges of 71∼158, 40∼106, and 28∼43 μg/m3, respectively. TSP and PM10 showed highest concentration in April; this seems to be due to Asian dust from China and/or Mongolia. However, the fine particle of PM2.5 showed a relatively constant level during the monitoring period. Heavy metals in PM 10 and PM2.5, such as Cr, As, Cd, Mn, Zn and Pb, were also analysed during the same period. The monthly average concentrations of heavy metal in PM2.5 were Cr:1.9∼22.7 ng/m3; As:0.9∼2.5 ng/m3; Cd: 0.6∼7 ng/m3; Mn:6.1∼22.6 ng/m3; Zn: 38.9∼204.8 ng/m3, and Pb: 21.6∼201.1 ng/m3. For the health risk assessment of heavy metals in ambient particles, excess cancer risks were calculated using IRIS unit risk. As a result, the excess cancer risks of chromium, cadmium, and arsenic were shown to be more than one per million based on the annual concentration of heavy metals, and chromium showed the highest excess cancer risk in ambient particles in Seoul.  相似文献   

13.
Based on the well-known approaches to risk assessment, estimates of the number of attributable deaths caused by atmospheric air pollution in the towns of Russia have been obtained. The data of daily monitoring of air pollution in 1993 and 1998 carried out by Rosgidromet (Weather Service of Russia) were used for assessment. The epidemiology-based exposure–response function for a 10 g/m3 increase in particulate matter PM10 was used to assess the attributable number of cases of deaths in Russia. The EPA approach was applied to derive the risk of carcinogenesis caused by outdoor carcinogens controlled by Rosgidromet. In the present paper, it has been shown that up to 219–233 thousands of premature deaths or 15–17% out of the total annual mortality might be caused by air pollution in Russia. The data are given on a possible contribution of various carcinogens controlled by Rosgidromet at the stations of constant observation to the total mortality caused by atmospheric pollution. On the whole, the number of people that fell ill with cancer as a result of exposure to all the carcinogens present in the atmosphere can be assessed within the range of 2000–4000 humans. This assessment estimates the public-health impacts of air pollution. At the present time, we have no information concerning the degree of universality of the exposure–response function for PM10 and its sensitivity to a change in social-demographic indicators. Nevertheless, the assessments, given in the present work, make it possible to obtain important information concerning the possible scale of health-outcome due to atmospheric pollution for the population of Russia.  相似文献   

14.
In Taiwan, the immediate health care requirements of students and faculty members are satisfied by on-campus medical service centers. The air quality within these centers should comply with the guidelines laid down by the Taiwan Environmental Protection Agency (EPA). Accordingly, this study performed an experimental investigation into the efficiency of various chlorine dioxide applications in disinfecting a local student health center (SHC). The air quality before and after disinfection were evaluated in terms of the bioaerosol levels of bacteria and fungi. The average background levels of bacteria and fungi before disinfection were found to be 1,142 ± 455.4 CFU/m3 and 520 ± 442.4 CFU/m3, respectively. Chlorine dioxide (0.3 mg/m3) was applied using three different methods, namely a single, one-off application, multiple applications within a single day, and regular (daily) applications. Among the three disinfection methods, the regular application method was found to yield a high disinfection efficiency for both bacteria and fungi, i.e., 6.5 ± 0.7% and 4.2 ± 0.3%, respectively. The average residual bacteria and fungi levels after regular daily interval disinfection were 318.8 ± 51.5 CFU/m3 and 254.0 ± 43.8 CFU/m3, respectively. Therefore, the results suggest that the air quality guidelines prescribed by the Taiwan EPA for SHCs and other healthcare facilities can best be achieved by applying chlorine dioxide at regular (daily) intervals.  相似文献   

15.
深圳市大气中PCDD/Fs污染水平初步研究   总被引:1,自引:1,他引:1  
目的:了解深圳市大气中二噁(PCDD/Fs)的污染水平和分布特征。方法:利用大流量空气采样器分别采集6个采样点的空气样品,每个采样点采集两个平行样品。参照美国环保总局(US EPA Method TO-9A)二噁的检测方法,通过高分辨气相色谱-高分辨双聚焦磁式质谱仪(HRGC/HRMS)对大气样品中17种具有毒性当量因子(TEF)的单体进行了定性和定量分析。结果:∑PCDD/Fs的浓度范围为0.23~11.88pg/m3(平均值为3.84 pg/m3)。毒性当量浓度范围为0.014~0.29 pg I-TEQ/m3(平均值为0.135 pg I-TEQ/m3)。OCDD、HpCDD、HpCDF、OCDF、HxCDF是丰度较大的单体,分别占总浓度的48.21%、15.85%、11.37%、7.40%、6.59%。PCDDs和PCDFs单体浓度(除OCDF之外)均随氯原子取代个数的增加而增大。2,3,4,7,8-PeCDF对总的毒性当量贡献最大,占总毒性当量浓度的38.87%。六个采样点中有三个地点二噁同系物分布显示了"源"的特征,而另外三个地点则显示了"汇"的特征。成人的PCDD/Fs暴露量为0.0023~0.047 pg I-TEQ/kg.day;儿童PCDD/Fs暴露量为0.0052~0.11 pg I-TEQ/kg.day。结论:深圳市大气样品中二噁浓度低于国内一些城市研究水平,而高于日本、欧美国家的研究水平。  相似文献   

16.
In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)- ${\rm{\beta}} $ -d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value = 0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-β -d-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-β -d-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed poor correlations between those in airborne and dust-borne states (R2?=?0.002~0.43). In our study, the lowest ultrafine particle concentration about 5,203 pt/cm3 was observed in office and the highest was observed at the train station, up to 32,783 pt/cm3. Lead concentration was shown to range from 80 to 170 ng/mg with the highest also observed at the train station. The information provided in this work can be used to learn the general situation of relevant health risks in Beijing. And the results here suggested that when characterizing exposure both airborne and dust-borne as well as the environments should be considered.  相似文献   

17.
Measurements of the urban air concentrations of PAHsassociated with PM2.5-fine and PM10-coarse particles inChicago on the campus of IIT were achieved using a UniversalAir Sampler. Short sampling time (12 hr) and high flowrates were used to measure the PAH concentrations in fineand coarse particles. Measured ambient concentrations ofPAHs were classified based on wind direction and backtrajectory calculations as Land and Lake samples.Differences in ambient concentrations of PAHs were observedbetween Land and Lake samples. Fine particle concentrationsvaried from 9.5 to 25.7 ng m-3 and averaged18.2 ng m-3 for the Land samples, while they ranged from4.2 to 31.5 ng m-3 and averaged 13.4 ng m-3 for the Lake samples. The measured PAH concentrationsin coarse particles varied from 6.2 to 22.1 ng m-3 and averaged 12.9 ng m-3 for the Land samples, andthey ranged from 2.4 to 13.0 ng m-3 with an average value of 7.3 ng m-3 for the Lake samples. The fine/coarse ratio of each individual PAH compound varied between1.3 and 2.7 for the Land samples; it varied between 1.6 and 4.2 for the Lake samples. There was an increase in the fine/coarse ratio of PAH as molecular weight of the compound increases for both Land and Lake samples.  相似文献   

18.
The present study proposed to investigate the atmospheric distribution, sources, and inhalation health risks of polycyclic aromatic hydrocarbons (PAHs) in a tropical megacity (Delhi, India). To this end, 16 US EPA priority PAHs were measured in the inhalable fraction of atmospheric particles (PM10; aerodynamic diameter, ≤10 μm) collected weekly at three residential areas in Delhi from December 2008 to November 2009. Mean annual 24 h PM10 levels at the sites (166.5–192.3 μg m?3) were eight to ten times the WHO limit. Weekday/weekend effects on PM10 and associated PAHs were investigated. Σ16PAH concentrations (sum of 16 PAHs analyzed; overall annual mean, 105.3 ng m?3; overall range, 10.5–511.9 ng m?3) observed were at least an order of magnitude greater than values reported from European and US cities. Spatial variations in PAHs were influenced by nearness to traffic and thermal power plants while seasonal variation trends showed highest concentrations in winter. Associations between Σ16PAHs and various meteorological parameters were investigated. The overall PAH profile was dominated by combustion-derived large-ring species (85–87 %) that were essentially local in origin. Carcinogenic PAHs contributed 58–62 % to Σ16PAH loads at the sites. Molecular diagnostic ratios were used for preliminary assessment of PAH sources. Principal component analysis coupled with multiple linear regression-identified vehicular emissions as the predominant source (62–83 %), followed by coal combustion (18–19 %), residential fuel use (19 %), and industrial emissions (16 %). Spatio-temporal variations and time-evolution of source contributions were studied. Inhalation cancer risk assessment showed that a maximum of 39,780 excess cancer cases might occur due to lifetime inhalation exposure to the analyzed PAH concentrations.  相似文献   

19.
Beryllium concentrations in atmospheric particulate and soil samples in and around a Beryllium Processing Facility (BPF) have been measured. The mean air concentration level of beryllium in and around the fence line of the BPF is 0.48 ± 0.43 ng m-3 (n = 397) and is mostly influenced by diurnaland seasonal changes. The observed air concentration levelswere well below the prescribed ambient air quality (AAQ)standard of 10 ng m-3. The soil concentration levels ofberyllium in the study area were found to be in the range of 1.42–2.75 g g-1. The mass median aerodynamic diameter (MMAD)of beryllium aerosols in ambient air was found to be 6.9 m.Source identification using the Enrichment Factor (EF) approachindicates soil as the predominant contributory source for air concentrations at the site.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号