首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The inorganic chemical species in Maresh and Luda Yana rivers affected by the Cu– Mo Asarel-Medet mine, Bulgaria were determined during a low-flow and a high-flow period. The mining activities, the weathering and the oxidation processes strongly influenced the physicochemical processes in the whole water system. The main pollution source was a small lake receiving the acid effluents of the mining activities. High levels of SO4 2???, Cu, Mg, Al, Mn and Fe were determined at the mining polluted and affected stations. Cu2?+? and CuCO3 0 species (1:1) were present in the reference waters and Cu2?+? and CuSO4 0 species (1:1) in the polluted and affected waters; Cu2?+? species was dominating downstream. Me2?+? followed by $\rm{MeSO}_{4}^{\kern3pt{0}}$ (Me = Mn, Zn, Cd and Pb), $\rm{PbCO}_{3}^{\kern3pt{0}}$ and $\rm{PbHCO}_{3}^{\kern3pt{+}}$ species as well as $\rm{Fe(OH)}_{2}^{\kern3pt{+}}$ , $\rm{Al(OH)}_{4}^{\kern3pt{-}}$ , $\rm{Al(OH)}_{2}^{\kern3pt{+}}$ , $\rm{Al(OH)}_{3}^{\kern3pt{0}}$ were prevailing in the system. $\rm{MeSO}_{4}^{\kern3pt{+}}$ and $\rm{Me(SO}_{4})_{2}^{\kern3pt{-}}$ (Me = Fe, Al), $\rm{Me(SO}_{4})_{2}^{\kern3pt{2-}}$ (Me = Zn, Cd and Pb), $\rm{Me(SO}_{4})_{3}^{\kern3pt{4-}}$ (Me = Zn, Cd) and $\rm{Cd(SO}_{4})_{4}^{\kern3pt{6-}}$ species polluted and affected waters. The major elements K and Na were mainly Me?+? species, whereas Ca and Mg were Me2?+? and $\rm{MeSO}_{4}^{\kern3pt{0}}$ species in different ratios. The concentration of concentration of $\rm{NO}_{2}^{\kern3pt{-}}$ , $\rm{NO}_{3}^{\kern3pt{-}}$ and $\rm{NH}_{4}^{\kern3pt{+}}$ species as well as complex phosphorous species such as H2 $\rm{PO}_{4}^{\kern3pt{-}}$ , $\rm{FeHPO}_{4}^{\kern3pt{+}}$ , $\rm{HPO}_{4}^{\kern4pt{2-}}$ , $\rm{CaPO}_{4}^{\kern3pt{-}}$ , $\rm{CaHPO}_{4}^{\kern3pt{0}}$ and $\rm{MgHPO}_{4}^{\kern3pt{0}}$ were also calculated. The trace element concentrations decreased downstream due to dilution, sorption processes and precipitation, but the percentage of free metal species, which are more toxic, increased. An exception was iron and aluminum of which the dominant hydroxy colloidal and sulphate species were easily incorporated into the suspended phase.  相似文献   

2.
Across many environments, nitrate ( $\mbox{NO}_{3}^-$ ) is an important form of N available for microorganisms and photosynthetic organisms. Accurate $\mbox{NO}_{3}^-$ measurements are important for examining N cycling and retention in terrestrial and aquatic ecosystems, but a common method of $\mbox{NO}_{3}^-$ analysis can underestimate $\mbox{NO}_{3}^-$ concentrations when soluble iron is present (iron > 10 mg L???1). The basic method is robust, using copperized cadmium to reduce $\mbox{NO}_{3}^-$ and then diazotizing the resulting $\mbox{NO}_{2}^-$ in a two-step process to form an easily measured colored product. We show that iron interference is unique to using an NH4Cl and ethylenediaminetetraacetic acid (EDTA) buffer. We hypothesize that interference is through iron-catalyzed reduction of the intermediate color product, a diazonium ion. We examine three historical buffers as alternatives to NH4Cl/EDTA and recommend replacement of EDTA with diethylenetriaminepentaacetic acid, which chelates metals much like EDTA, but unlike EDTA, it does not cause interference in the presence of iron.  相似文献   

3.
The Lead–Zinc Company region, Kardjali city, Bulgaria, is known to be highly polluted with heavy metals from its pyrometallurgical activities. The polluted levels and the chemical speciation in surface natural waters in the region as well as in the wastewaters of the factory were investigated in January 2008 by application of monitoring studies, thermodynamic modeling, and interpretation in terms of the “softness–hardness” factor. It was found that the levels of trace metals pollution of surface waters were lower than the legislation limits for the regions with Pb and Zn production. The wastewater treatment facilities of the company were found to operate properly, and the quality of the cleaned waters in station Kar4 was comparable to the other surface waters studied (e.g., station Kar5). The trace metals were divided into three groups: (1) Fe3?+? and Al3?+?, being “hard” acids, existed in all the studied waters as hydroxy species Fe(OH) $_{2}^{+}$ , AlOH2?+?, and Al(OH) $_{2}^{+}$ , followed by the phosphate species AlPO $_{4}^{0}$ and Al2(OH)2PO $_{4}^{+}$ ; (2) Mn2?+?, Zn2?+?, and Cd2?+? being “soft” acids with crystal field stabilization energy (CFSE) = 0 were present in natural waters mainly as free Me2?+? ions. Small concentrations of their MeSO $_{4}^{0}$ , MeCO $_{3}^{0}$ species, and of MeCl $_{2}^{0}$ (Me = Zn, Cd) species were also calculated. In the wastewaters, two more species [Me(SO $_{4})_{2}^{2-}$ and Me(SO $_{4})_{3}^{4-}$ ] of the softer Zn and Cd metals were also calculated; (3) Cu2?+? and Pb2?+?, as “soft” acids with CFSE $\ne $ 0 preferentially coordinated with softer CO $_{3}^{2-}$ ions and in natural waters existed mainly as MeCO $_{3}^{0}$ and PbHCO $_{3}^{+}$ , followed by free Me2?+?ions and MeOH?+?. In the wastewaters, MeSO $_{4}^{0}$ and Pb(SO $_{4})_{2}^{2-}$ species increased at the expense of the free Me2?+? ions. The highest self-cleaning capability of natural waters was found with respect to Al and Fe, followed by Mn and Cd. The lowest corresponded to Pb, Cu, and Zn.  相似文献   

4.
Airborne particulate matter (PM10) was collected for a period of 1 year at six locations in Madurai city, India. The chemical analyses on PM10 samples were carried out for the estimation of heavy metals and ions using atomic absorption spectroscopy and ion chromatography respectively. The average PM10 concentrations varied from 97.2 to 152.5 μg/m3, which were found to be below the Indian air quality standards. While industrial areas had the highest concentrations of heavy metals such as Fe, Zn and Cr and also the $\text{SO}_{4}^{2-}$ ions, traffic areas with relatively higher traffic densities in the city endured highest concentrations of Cd and the $\text{NO}_{3}^{-}$ ion. As gaseous pollutants serve as precursors of ionic particles in the atmospheric environment, gaseous pollution control is necessitated along with particulate with special reference to heavy metal and ion pollution abatement for the sustainable development of Madurai city.  相似文献   

5.
Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H?+?, Ca2?+?, Mg2?+?, Na?+?, K?+?, $\text{NH}_{4}^{+}$ , Cl???, $\text{NO}_{3}^{-}$ , and $\text{SO}_{4}^{2-}$ . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except $\text{NO}_{3}^{-}$ , $\text{SO}_{4}^{2-}$ , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.  相似文献   

6.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 28 groundwater samples were collected around Vrishabhavathi valley region of Bangalore South Taluk to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca2?+?, Mg2?+?, Na?+?, K?+?) and anions $(\text{HCO}_{3}^{-}$ , Cl???, F???, $\text{SO}_{4}^{2-}$ , $\text{NO}_{3}^{-}$ , $\text{PO}_{4}^{3-}$ , $\text{CO}_{3}^{2-})$ besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed to delineate spatial variation in physico-chemical characteristics of groundwater samples. Piper trilinear diagram was constructed to identify groundwater groups (hydrochemical facies) using major anionic and cationic concentration and it was found that majority of the samples belongs to $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{Cl}^{-}-\text{SO}_{4}^{2-}$ and $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{HCO}_{3}^{-}$ hydrochemical facies. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 92.86% of the samples were falling under good to permissible category and C3–S1 groups, respectively, indicating high salinity/low sodium.  相似文献   

7.
We present a seasonal and baseline survey of selected physicochemical parameters in epipelagic samples from Qua Iboe (QIB) and Cross River (CRV) estuaries in Niger Delta region of Nigeria. The parameters analysed were temperature, pH, salinity, turbidity, total suspended solids (TSS), dissolved oxygen (DO), biochemical oxygen demand (BOD), total organic carbon (TOC), total nitrogen, available phosphorus, Ca2?+?, Mg2?+?, Na?+?, K?+? (exchangeable cations) and ${\rm SO}_{4}^{2-}$ , Cl???, ${\rm NH}_{4}^{+}$ and ${\rm NO}_{3}^{-}$ . The results showed that the physicochemical parameters exhibited spatiotemporally explicit variabilities. The mean levels of the parameters were higher during the wet season (June–September) except salinity, DO, Cl??? and ${\rm NH}_{4}^{+}$ in CRV, whilst QIB recorded higher mean levels for temperature, pH, salinity, BOD, TOC, ${\rm SO}_{4}^{2-}$ , Cl??? and ${\rm NH}_{4}^{+}$ during the dry season (November–February). Significant seasonal variability was recorded for salinity, DO, turbidity, TSS, ${\rm SO}_{4}^{2-}$ and ${\rm NH}_{4}^{+}$ levels in CRV and for turbidity, DO, BOD, TSS, TOC, available P, Na, Cl??? and ${\rm NO}_{3}^{-}$ levels in QIB. This study confirmed that the degree of variability of the various physicochemical surface water quality indicators is dependent on the prevalent environmental estuarine factors.  相似文献   

8.
Particles with aerodynamic diameters <10  $\upmu $ m (PM10) and particles with aerodynamic diameters <2.5  $\upmu $ m (PM2.5) were sampled during summer 2006 in Beijing and mass concentrations, water-soluble ionic compounds concentrations, and acidic buffer capacity were analyzed. Results show that the mass concentration ranges of PM10 and PM2.5 were from 56.4 to 226.6  $\upmu $ g/m3 and from 31.3 to 200.7  $\upmu $ g/m3 during sampling days, respectively. Concentrations of F???, Cl???, NO $_{3}^{\,\,-}$ , NO $_{2}^{\,\,-}$ , SO $_{4}^{\,\,2-}$ , Ac???, Ca2?+?, Na?+?, K?+?, Mg2?+?, and NH $_{4}^{\,\,+}$ in particles were analyzed by ion chromatography. Microtitration was adapted to determine the acidic?Cbasic property and the change of the buffering systems in different pH of the aqueous solution in which the PM is suspended. The major alkalinity and buffer capacity of particles were analyzed and calculated. The average carbonate buffer capacity was 0.3 mmol/g in PM2.5 and 0.7 mmol/g in PM10. The average acetic acid buffer capacity was 0.1 mmol/g in PM2.5 and 0.3 mmol/g in PM10. Carbonate and acetic acid are the main species for the buffer capacity in the particle phase. The average mass of carbonate was 71.0 mg/g in PM10 and 46.7 mg/g in PM2.5. The average mass of acetic acid was 11.2 mg/g in PM2.5 and 20.0 mg/g in PM10.  相似文献   

9.
This aim of this monitoring was to assess water quality in a dry season for the Cape Coast municipality in Ghana, which has been experiencing chronic water shortages. Fifteen different sampling stations—four surface, five ground, and six tap water samples—were analyzed for physicochemical and microbiological parameters during January to April 2005. Levels or trends in water quality that may be deleterious to sensitive water uses, including drinking, irrigation, and livestock watering have been noted with reference to well-established guidelines. Exceedances to some health-based drinking water guidelines included positive coliform for various water samples; pH for all groundwater samples (pH 5.9 ± 0.3); conductivity for 50% groundwater; color for about a third of groundwater and tap water; Mn for 44% tap water, 67% groundwater, and 50% surface water samples. The World Health Organization laundry staining Fe guideline of 0.3 mg/l was exceeded by 75% of surface water, 44% tap water, and 53% groundwater samples. The corresponding Mn guideline of 0.1 mg/l was exceeded by all the water samples. Respectively, all surface water samples and also 75% of the surface water exceeded some known Cu and Zn guideline for the protection of aquatic life. Compared to some historic data for Fosu Lagoon, the current study shows a lowering of ~1 pH unit, increase of ~65% $\text{NH}_{3}$ , one to two orders of magnitude increase in PO $_{4}^{{3}^{-}}$ , and more than two orders of magnitude increase in NO $_{3}^{-}$ . In several instances, tap water samples collected at the consumers’ end of the distribution system did not reflect on the true quality of the treated water. Mn, SO $_{4}^{{2}^{-}}$ , PO $_{4}^{{3}^{-}}$ , Cu, and Zn were among the chemical contaminations observed to occur in the distribution system.  相似文献   

10.
In this study, surface water quality of the Ceyhan River basin were assessed and examined with 13 physico-chemical parameters in 31 stations in 3 months during the period of 2005. Multivariate statistical techniques were applied to identify characteristics of the water quality in the studied stations. Nutrients, Cl??? and Na?+? affected mostly to the stations of Erkenez 2, S?r 2, and S?r 3 in the ordination diagram of correspondence analysis. Three factors were extracted by principal component analysis, which explains 79.14% of the total variation. The first factor (PC1) captures variables of EC, DO, NO $_{2}^{\; -}$ , PO $_{4}^{\; \equiv }$ , Cl???, SO $_{4}^{\; =}$ , Na?+?, and Ca?+?+?. The second factor (PC2) is significantly related to pH, NH $_{3}^{\; -}$ , and Mg?+?+?, while water temperature (T) and NO $_{3}^{\; -}$ accounted for the greatest loading for factor 3 (PC3). The stations were divided into three groups for PC1, two groups for PC2, and three groups for PC3 by hierarchical cluster analysis. The stations in the vicinity of cities presented low dissolved oxygen and high concentration of physico-chemical parameter levels. The stations of Erkenez 2, S?r 2, S?r 3, and Aksu 4 located near the city of Kahramanmara? were characterized by an extremely high pollution due to discharge of wastewater from industry and domestic. P?narba?? and Elbistan stations were also influenced by household wastewater of the city of Elbistan. According to criteria of Turkish Water Pollution Control Regulation, Erkenez 2, S?r 2, and S?r 3 stations have high polluted water. This study suggests that it is urgent to control point pollutions, and all wastewater should be purified before discharge to the Ceyhan River basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号