首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
This study reports the quantification of the toxicity of particulate matter (PM)-bound metals and their possible associated risks to human health. For assessment of PM, 24-h samples of PM10 and PM2.5 were collected by Mini Vol-TAS sampler at an urban site of Pune. Samples were sequentially extracted with ultrapure water and concentrated HNO3 and analyzed for “soluble” and “total” metals. Factor analysis identified the resuspension of road dust due to traffic, biomass burning, construction activities, and wind-blown dust as possible sources that played an important role for overall pollution throughout the year. Water-soluble proportion was found to be ≤20 % for Cr, Co, Fe, and Al; ≥50 % for Sr, Cd, Ca, and Zn; and a substantial proportion (~25–45 %) for Mn, Ba, K, Na, Ni, Mg, Cu, and Pb metals in PM10. For PM2.5, the water-soluble proportion was ≤20 % for Fe, Co, Ni, Cr, and Al, while Sr, K, and Cd were mostly soluble (>50 %) and Cu, Ba, Mn, Ca, Zn, Pb, Na, and Mg were substantially soluble (~25–45 %). In the present study, among the toxic metals, Cd and Pb show higher concentration in the soluble fraction and thus represent the higher bioavailability index and especially are harmful to the environment and exposed person. Risk calculations with a simple exposure assessment method showed that the cancer risks of the bioavailable fractions of Cr, Cd and Ni were greater than the standard goal.  相似文献   

2.
Selected trace metals were estimated by atomic absorption spectrometry in the water and soil samples collected from the remote region of Himalaya. The soil samples were analysed for soluble and acid extractable fraction of trace metals. In water samples, Ca, Na, Mg and K emerged as dominant contributors, whereas, Ca, Na, K, Mg, Fe and Pb were estimated at comparatively higher levels in the water extract of the soil. In case of acid extract of the soil samples, Ca, K, Fe, Mg, Mn and Na were found at elevated concentrations. Based on mean levels of the metals, following decreasing concentration order was observed in water samples: Ca > Na > Mg > K > Pb > Co > Cu > Zn > Mn > Cr > Fe > Cd > Li, however, in the acid extract of the soil, following order was noted: Ca > K > Fe > Mg > Mn > Na > Pb > Zn > Cr > Li > Cu > Co > Cd. The correlation study revealed appreciably diverse mutual relationships of trace metals in the water and soil samples. The multivariate cluster analyses exhibited divergent apportionment of trace metals in water and soil samples. Among the trace metals, Cd, Pb, Li, Zn, Cr, Cu, Mn and Co exhibited extreme to significant anthropogenic enrichment in the soil samples, while the rest of the metals were mostly contributed by the natural processes.  相似文献   

3.
The ambient PM10 and background soil samples were collected and analyzed with ICP-AES in eight cities around China to investigate the levels of ten heavy metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The mean concentrations of ten heavy metals in PM10 of the eight cities of China followed the order of Zn?>?Pb?>?Mn?>?Cu?>?Ni?>?Cr?>?Co?>?V. The metals in the ambient PM10 and soil were compared in each city to evaluate the heavy metal mass fraction from anthropogenic sources in ambient air. The CD values in these cities were all above 0.2, indicating that the ingredients spectrums of PM10 and soil vary markedly. Most heavy metals were enriched in PM10, except Fe and Ti. The results showed that almost all the cities suffer important heavy metal pollution from anthropogenic sources. The eight cities were also grouped according to their similarity in heavy metals of ambient PM10 by cluster analysis to investigate the relationship between the heavy metals and the pollution sources of each city. The conclusion was that the eight cities were divided into three clusters which had similar industrial type and economy scale: the first cluster consisted of Shenzhen, Wuxi, and Guiyang; followed by Jinan and Zhengzhou as the second grouping; and the third group had Taiyuan, Urumqi, and Luoyang.  相似文献   

4.
To document the spatial distribution and metal contamination in the coastal sediments of the Al-Khafji area in the northern part of the Saudi Arabian Gulf, 27 samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis using inductively coupled plasma-mass spectrometer (ICP-MS). The results revealed the following descending order of the metal concentrations: Sr > Fe > Al > As > Mn > Ni > V > Zn > Cr > Cu > Pb > Co > Hg > Cd. Average levels of enrichment factor of Sr, As, Hg, Cd, Ni, V, Cu, Co, and Pb were higher than 2 (218.10, 128.50, 80.94, 41.50, 12.31, 5.66, 2.95, 2.90, and 2.85, respectively) and that means the anthropogenic sources of these metals, while Al, Zn, Cr and Mn have enrichment factor less than 2, which implies natural sources. Average values of Sr, Hg, Cd, Cr, Ni, and As in the coastal sediments of Al-Khafji area were mostly higher than the values recorded from the background shale and earth crust and from those results along coasts of the Caspian Sea and the Mediterranean Sea. The highest levels of Cu in the northern part of the studied coastline might be due to Al-Khafji desalination plant, while levels of Al, Ni, Cr, Fe, Mn, Pb, and Zn in the central part may be a result of landfilling and industrial sewage. The highest levels of As, Cd, Co, Cu, Hg, and V in the southern part seem to be due to oil pollutants from Khafji Joint Operations (KJO). The higher values of Sr in the studied sediments in general and particularly in locality 7 could relate to the hypersalinity and aragonitic composition of the scleractinian corals abundant in that area.  相似文献   

5.
The distribution and accumulation of trace metals in the sediments of the Cochin estuary during the pre-monsoon, monsoon and post-monsoon periods were investigated. Sediment samples from 14 locations were collected and analysed for the metal contents (Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb), organic carbon, total nitrogen, total sulphur and grain size. The data were processed using statistical tools like correlation, factor and cluster analysis. The study revealed an enrichment of Cd and Zn in the study area particularly at station 2, which is confirmed by enrichment factor, contamination factor and geoaccumulation index. The factor analysis revealed that the source of Cd and Zn may be same. The study indicated that the spatial variation for the metals like Mg, Cr, Fe, Co, Ni, Cu, Zn, Cd and Pb were predominant unlike Mn which shows a temporal variation. The strong association of trace metals with Fe and Mn hydroxides and oxides are prominent along the Cochin estuary. The anthropogenic inputs of industrial effluents mainly control the trace metals enrichment in the Cochin estuary.  相似文献   

6.
Multi-elemental profiles in bark of green ash trees collected in three representative areas of Buenos Aires, Argentina and Montevideo, Uruguay, were assessed as potential air pollution indicators. Ten elements: Al, Ba, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn, were measured using inductively coupled plasma optical emissions spectrometry from 70 samples collected in different environments: central, residential and rural (reference site), in order to compare spatial patterns of metal concentration. The samples used as a control were collected from a nature reserve situated far away from any significant influences, not even a nearby road. The reference site (RF) exhibited the lowest concentrations of Al, Cr, Fe, Ni, Pb, and Zn. However, Ba and Mn showed similar concentrations in all measured sites. Magnesium is the only element that had a greater concentration in RF than at the other sites. Copper did not show any clear pattern. The Centre of Montevideo (MVD) showed higher concentrations of Al, Ba, Cr, Fe, Pb and Zn than the Centre of Buenos Aires (BA). In the A sectors, Montevideo (SAMVD) showed higher concentrations of Al, Cu, Mg, Ni, and Zn and lower concentrations of Ba, Cr, Fe, Mn, and Pb than Buenos Aires (SABA). In the B sectors, Montevideo (SBMVD) showed higher concentrations of Al, Ba, Cu, Fe, Pb, and Zn and lower concentrations of Cr and Mg than Buenos Aires (SBBA), but similar concentrations of Mn and Ni. The use of bark for biomonitoring metals allowed us to detect concentration differences related to the urban fabric and the different kinds of vehicles and their fuels. In the cities, the differences in metal concentrations detected in bark were more striking between the sectors than between centers, despite CBA being much larger than CMVD in population, extension and vehicular traffic.  相似文献   

7.
An assessment on heavy metal (Al, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn) accumulation by seven seagrass species of Lakshadweep group of islands was carried out using multivariate statistical tools like principal component analysis (PCA) and cluster analysis (CA). Among all the metals, Mg and Al were determined in higher concentration in all the seagrasses, and their values varied with respect to different seagrass species. The concentration of the four toxic heavy metals (Cd, Pb, Zn and Cu) was found higher in all the seagrasses when compared with the background values of seagrasses from Flores Sea, Indonesia. The contamination factor of these four heavy metals ranged as Cd (1.97–12.5), Cu (0.73–4.40), Pb (2.3–8.89) and Zn (1.27–2.787). In general, the Pollution Load Index (PLI) calculated was found to be maximum for Halophila decipiens (58.2). Results revealed that Halophila decipiens is a strong accumulator of heavy metals, followed by Halodule uninervis and Halodule pinifolia, among all the tested seagrasses. Interestingly, the small-leaved seagrasses were found to be efficient in heavy metal accumulation than the large-leaved seagrass species. Thus, seagrasses can better be used for biomonitoring, and seagrasses can be used as the heavy metal sink as the biomass take usually long term to get remineralize in nature.  相似文献   

8.
Surface soil samples collected from a Pb and Zn mining area in India were subjected to multi-elemental analysis by using inductively coupled plasma-atomic emission spectrometry. Multivariate statistical methods such as principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to analyze the data and to apportion the possible sources of elements in soils of a metal mining area. Soils in this area have elevated heavy metal concentrations especially Pb, Zn, Mn, Cu, As, and Tl. Using principal component (PC) analysis, six components were extracted, out of which two PCs explaining 50.12% of total variance are more important. The first principal component with a high contribution of Ag, As, Be, Cd, Co, Cu, Mg, Mn, Ni, Pb, and Zn was deemed to be technogenic/anthropogenic component, and the second principal component, with high loadings for the five discerning variables (Al, Be, Cr, K, Li), was considered as lithogenic component. The third component having strong loadings of Ba, Ca, K, and Na is supposed to have a mixed origin (lithogenic as well as technogenic). Electrical conductivity and total organic matter were not correlated with any element and also have a strong loading in the fifth component which is probably the biomass and ions present in these soils. The findings of the principal component analysis were also substantiated by the cluster analysis. The present study would not only enhance our knowledge regarding the soil pollution status in the study area but would also provide us information to manage the sources of these elements in the study area.  相似文献   

9.
Thirty-five surface sediment samples from the Indian continental shelf were recovered offshore from the mouths of the major rivers (Brahmaputra, Ganges, Narmada, Tapti, Godavari, Krishna and Cauvery) discharging into the coastal region of both east and west coasts were analysed using inductively coupled plasma atomic emission spectroscopy for selected major (i.e. Al, Ca, Fe, K, Ti, Mg and Na) and trace elements (e.g. Ba, Co, Cr, Cu, Ga, Ni, P and V), after total dissolution. The main objectives are to understand the processes controlling major and trace elements in the surface sediments and to identify natural and anthropogenic sources in the coastal environment using statistically regressed elemental concentrations to establish regional baseline levels. Metal enrichments observed close to the major urban areas in the east and west coasts are associated with the industrialised activities areas rich in Cu and Co in both the east and west coast sediments. Normalisation of metals to Al indicated that high enrichment factors are in the order of Ca>Ti≥Fe>Na>Mg>Co>Cu>Ga>V>Ba except K and P depletion. This indicated that the characteristic of estuarine sediment showed higher level along the west coast of India, which was reflected in the coastal sediments as similar to the source of its origin from the riverine composition and its abundances.  相似文献   

10.
Metal concentrations in deciduous tree leaves from urban areas in Poland   总被引:1,自引:0,他引:1  
Accumulation of metals in deciduous tree foliage fromurban areas in western-south Poland was monitored duringthe vegetation season of 2000 year. Concentrations of Al,Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr, Ti and Znwere measured in birch, willow, linden and maple leavesusing the ICP-AES method. Seasonal variations of metalconcentrations and their relations with sampling sitewere investigated. The most dynamic accumulation of Al,Cd, Cr, Ni and Pb was observed for examined species. Thehighest differences in element concentrations forinvestigated sites were found for Ba, Cd, Mn and Ni.Interelement correlations were investigated. In allfoliar samples synergistic relationships between Al–Crand Ca-Sr were found. Statistically significant negativecorrelations were observed only for Cd and Ti in birch leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号