首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 109 毫秒

1.  机动车限行期间大气颗粒物(TSP、PM_(10))中二■英(PCDD/Fs)的削减  
   孙俊玲  王鹏焱  张庆华《环境化学》,2019年第7期
   为探讨不同交通状况下大气颗粒物中二■英(PCDD/Fs)的污染特征以及评估交通限行对大气颗粒物中二■英(PCDD/Fs)变化趋势的影响,在中国地质大学(北京)东门使用中流量采样器对大气颗粒物PM_(10)和TSP样品进行了连续同步采集,应用同位素稀释高分辨率气相色谱/高分辨率质谱(HRGC/HRMS)联用法和US EPA 1613B标准方法,检测分析了北京市交通限行期间以及交通限行前后等不同交通状况下大气颗粒物TSP和PM_(10)中17种2,3,7,8-氯取代PCDD/Fs浓度及其变化特征,结果显示,PCDD/Fs在TSP中的浓度和毒性当量(TEQ)分别是交通限行前2117 fg·m~(-3)(120.85 fg I-TEQ·m~(-3))、限行期间550 fg·m~(-3)(25.26 fg I-TEQ·m~(-3)),在PM_(10)中的浓度(毒性当量)分别是交通限行前2045 fg·m~(-3)(112.87 fg I-TEQ·m~(-3))、限行期间484 fg·m~(-3)(19.67 fg I-TEQ·m~(-3))、限行结束后1572 fg·m~(-3)(81.06 fg I-TEQ·m~(-3)). PCDDs浓度远低于PCDFs,体现了典型"热源"特征,除OCDF外,PCDDs和PCDF同族体浓度变化趋势表现为随着取代氯原子个数的增加而增大,PCDD/Fs主要附着在PM_(10)中,占TSP中总浓度的87%—97%,平均92%.交通限行期间PCDD/Fs污染水平明显降低,临时交通流控制措施是PCDD/Fs降低的主要因素.当前的研究结果力求为评价交通源对大气环境中PCDD/Fs的影响以及交通限行对PCDD/Fs的削减贡献提供支撑.    

2.  广州某观测点春季大气样品中二NFDA1英日均浓度变化分析  被引次数:1
   田艺  张素坤  李杰  任明忠  张漫雯  青宪《中国环境监测》,2013年第29卷第5期
   在广州某商住区楼顶开展为期1个月的大气样品连续采样,利用高分辨气相色谱-高分辨质谱仪测定了样品中17种毒性二 NFDA1 英(PCDD/Fs)的含量。结果表明,该采样点位样品二 NFDA1 英I-TEQ浓度范围为0.094~1.34 pg I-TEQ/m3,样品日平均浓度相对偏差范围为3.2%~118.8%,6日平均浓度相对偏差范围为1.2%~60.1%,6日平均值更能较好地反映样品长期平均浓度。气象变化对样品中二 NFDA1 英I-TEQ浓度有明显影响,降雨后样品中的二 NFDA1 英I-TEQ浓度明显低于降雨前,降雨前或降雨中样品的二 NFDA1 英I-TEQ浓度与降雨后样品比值最高达到9.0,样品二 NFDA1 英I-TEQ浓度与PM2.5的线性相关性高于其与TSP、温度相关性,上述三者的r值和P值分别为0.637、-0.296、0.271和0.611、0.326、0.329。    

3.  交通限行对大气颗粒物及PM_(2.5)中二■英的影响  
   孙俊玲  王鹏焱  张庆华《中国环境监测》,2019年第5期
   为了研究北京大气颗粒物和二■英(PCDD/Fs)的污染状况以及评估交通限行对大气颗粒物和PCDD/Fs的影响。利用同位素稀释高分辨率气相色谱/高分辨率质谱(HRGC/HRMS)联用法和USEPA 1613B标准方法,以中国地质大学(北京)东门为采样点,采集大气PM_(2.5)、PM_(10)、TSP样品,对北京市交通限行期间以及交通限行前后等不同交通状况下颗粒物浓度及大气PM_(2.5)中17种2,3,7,8-PCDD/Fs污染特征进行了监测。结果表明,PM_(2.5)、PM_(10)、TSP的日均质量浓度在交通限行前分别为126、202、304μg/m~3,限行期间分别为39、78、93μg/m~3,限行结束后分别为79、126μg/m~3。PM_(2.5)中17种PCDD/Fs的质量浓度(毒性浓度) 3个时段分别为1 804 fg/m~3(70 fg I-TEQ/m~3)、252 fg/m~3(9 fg I-TEQ/m~3)和1 196 fg/m~3(48 fg I-TEQ/m~3)。北京市交通限行期间颗粒物浓度和二■英浓度显著低于交通限行前后,交通源减排措施的实施是大气颗粒物和二■英污染水平降低的主要原因,从减排效果看,交通源减排措施对大气细颗粒物(PM_(2.5))的控制效果明显好于大气粗颗粒物。    

4.  某典型交通路口大气颗粒物(PM10和PM2.5)中多氯联苯季节变化特征  
   孙俊玲《中国环境监测》,2020年第36卷第3期
   应用同位素稀释高分辨率气相色谱-高分辨质谱 (HRGC-HRMS) 联用技术对北京市北四环典型交通路口大气颗粒物PM10和PM2.5中多氯联苯(PCBs)进行了监测,分析了PCBs浓度水平、单体组成特征、粒径分布规律和季节变化趋势。结果表明:大气颗粒物PM10和PM2.5样品中19种PCBs浓度和毒性浓度(TEQ,以世界卫生组织毒性当量因子WHO-TEF计)分别为1.05~13.83 pg/m3(平均值为6.66 pg/m3)和1.24~15.18 fg/m3 (平均值为6.84 fg/m3)、0.80~8.51 pg/m3(平均值为4.32 pg/m3)和0.88~13.40 fg/m3 (平均值为5.90 fg/m3),PM10和PM2.5中PCBs的单体分布模式相似,浓度丰度最大的是PCB-28和PCB-209,而对毒性当量贡献最大的是PCB-126。PCBs浓度季节变化明显,冬、春季明显高于夏、秋季。 PCBs浓度季节变化特征表明,不同季节采样点PCBs来源不同,除历史使用外,采暖季节可能主要来自机动车排放和化石燃料的燃烧,而非采暖季节主要来自机动车排放。粒径分布表现为PCBs倾向于富集在PM2.5中,占PM10总浓度的61%~87%(平均值为72%)。    

5.  北京市某垃圾焚烧厂周边大气二(口恶)英污染特征及暴露风险  
   齐丽  任玥  刘爱民  黄业茹  赵震  王江  李泓《环境科学》,2017年第38卷第4期
   2014年4月至2015年1月对北京市某生活垃圾焚烧发电厂周边6 km范围内7个采样点采集环境空气,应用高分辨气相色谱-高分辨质谱(HRGC-HRMS)联用技术对二英(PCDD/Fs)浓度水平进行监测并对其组成特征及时空特征进行了分析.结果表明该生活垃圾焚烧发电厂周边环境空气中PCDD/Fs质量浓度的变化范围为8.9~140 pg·m-3,毒性当量(TEQ)变化范围为0.11~1.8 pg·m-3,其中秋季霾天4个采样点和冬季全部采样点超出日本环境空气质量标准限值(TEQ:0.6 pg·m-3).1,2,3,4,6,7,8-HpCDF和OCDD是四季空气中PCDD/Fs质量浓度的主要贡献单体,年平均贡献率分别为20.5%和14.0%,而2,3,4,7,8-PeCDF是总TEQ贡献最大的单体,年平均贡献率为43.3%.空间分布特征表现为各采样点浓度水平与距污染源距离远近没有显著相关性;季节变化特征表现为冬季值显著高于其他季节,分析可能与冬季燃煤采暖及大气扩散条件差导致的大气颗粒物污染较重有关,与各季采样时段内大气PM10和PM2.5的平均浓度水平呈正相关相一致.样品中二英同族体及异构体分布指纹谱图与该焚烧设施排放烟气存在差别,主成分分析(PCA)源解析结论与指纹谱图特征分析结论一致.二英呼吸暴露剂量估算结果表明该区域人群呼吸暴露风险总体处于较为安全的水平[0.060~0.224 pg·(kg·d)-1],但仍需关注大气颗粒物重污染天气发生时的呼吸暴露风险.    

6.  冬季大气中PM10和PM2.5污染特征及形貌分析  被引次数:5
   郭清彬  程学丰  侯辉  张先波《中国环境监测》,2010年第26卷第4期
   2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程: PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。    

7.  2007年春节期间北京大气颗粒物中多环芳烃的污染特征  
   李杏茹  郭雪清  刘欣然  刘晨书  张姗姗  王跃思《Journal of environmental sciences (China)》,1993年第5卷第2期
   利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.    

8.  京津冀典型城市采暖季颗粒物浓度与元素分布特征  被引次数:4
   张霖琳  高愈霄  刀谞  王超  滕恩江《中国环境监测》,2014年第30卷第6期
   选择京津冀地区3个典型城市和从南至北的4个国家大气背景站作为研究对象,收集采暖季空气颗粒物PM2.5、PM10样品,微波消解-ICP-MS法分析了样品中的68种元素.结果表明,北京、天津、石家庄PM2.5和PM10日均质量浓度均高于国家二级标准限值和背景点,一元线性回归分析结果表明,PM10与PM2.5质量浓度呈线性相关,Na、Mg、Al、S、K、Ca、Fe质量浓度为0.1~10 μg/m3,Si、P、Ti、Mn、Ni、Cu、Zn、Ba、Pb质量浓度为10~100 ng/m3,其他元素质量浓度为0.01~10 ng/m3或未检出.在元素构成上,S、Na、Al、K、Fe、Mg、Ca、P、Si等是主要元素,元素含量均大于1%.其他微量元素每种元素含量为0.1%~1%.14种重点防控重金属在PM2.5中的吸附显著高于PM10,主要来源于燃煤、燃油、工业排放、机动车尾气等.    

9.  “2+26”城市一次污染过程PM2.5化学组分和来源解析研究  
   曹云擎  王体健  韩军彩  王德羿  谢晓栋  吴昊  赵明《环境科学学报》,2020年第40卷第2期
   "2+26"城市颗粒物污染严重,城市间相互影响显著,开展该区域大气颗粒物组分特征及来源解析的研究,能够为大气污染精细化管控及城市间协同控制提供科学支撑.本文对"2+26"城市2016年12月16-23日一次颗粒物污染过程中的PM2.5组分数据进行了分析,使用空气质量模式CAMx-PSAT对PM2.5的来源进行了解析.结果表明,本次污染过程中阳泉的PM2.5最高日均浓度为137 μg·m-3,达到中度污染;长治、太原和滨州的PM2.5最高日均浓度分别为235、188、226 μg·m-3,达到重度污染;其余城市的PM2.5最高日均浓度值超过250 μg·m-3,达到严重污染.PM2.5中含量最多的4种组分为OC、NO3-、SO42-、NH4+,平均占比分别为19.38%±4.37%、18.20%±3.14%、16.83%±3.55%、10.35%±1.64%,NO3-的占比高于SO42-;Cl、Cd、Sn、Cu、Zn、As、Se、Pb和S元素的富集因子大于100,主要来自于人为排放,部分城市的Cd和As元素浓度超标,所有城市的Cr元素浓度均超标;各城市的OC/EC比值为4.96~11.60,说明有明显的二次有机颗粒物生成.模拟结果显示,PM2.5本地排放贡献为10%~47%,外地贡献为15%~68%,"2+26"城市以外区域的贡献为14%~53%;民用源、工业源、农业源、交通源、电力源的贡献分别为43.70%±5.94%、29.29%±4.93%、9.68%±1.09%、9.19%±1.69%、6.27%±1.37%.本研究表明,针对颗粒物主要组分OC、NO3-、SO42-、NH4+的前体物,开展民用源和工业源的减排及城市间的协同控制,才有可能达到理想的区域PM2.5控制效果.    

10.  邯郸市大气颗粒物污染特征的监测研究  被引次数:2
   张普  谭少波  王丽涛  赵秀娟  苏捷  张芬芬  魏哲  魏巍  程丹丹《环境科学学报》,2013年第33卷第10期
   使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.    

11.  华北地区乡村站点(曲周)夏季PM2.5中二次无机组分的生成机制与来源解析  被引次数:2
   陈仕意  曾立民  董华斌  朱彤《环境科学》,2015年第36卷第10期
   利用大气PM2.5水溶性组分及其气态前体物在线测量系统(GAC-IC)于2014年6月9日~7月11日对华北地区乡村站点曲周大气PM2.5中水溶性组分及其气态前体物进行了在线测量,分析了PM2.5中水溶性组分与气态前体物日变化规律及其相互作用,探讨了当地细颗粒物的气粒转化机制并分析了其来源. 结果表明夏季曲周大气PM2.5中水溶性无机离子与相关气态前体物的浓度呈现明显的日变化规律. 观测期间,PM2.5中SO42-、NH4+和NO3-的平均浓度分别是26.28、18.08和16.36 μg·m-3,是PM2.5中最主要的水溶性无机离子,约占PM2.5质量浓度的76.23%;气态前体物中,NH3浓度明显偏高、平均值为44.85 μg·m-3,主要来源于当地的农业活动排放;硫氧化率(SOR)和氮氧化率(NOR)平均值分别是0.60和0.30,表现出明显的二次污染特征. 经相关性分析发现: 曲周大气PM2.5中NH4+与NO3-、SO42-有良好的相关性,且表现为富氨状态,NH4+以(NH4)2SO4形式存在,NO3-的生成主要受HNO3的限制. 对NH4NO3平衡进行研究发现: 与夜间相反,白天曲周大气环境不利于NH4NO3生成和保持. 结果也表明, 二次转化是曲周夏季细颗粒物的主要来源,堆肥与农田释放的NH3是导致高浓度二次无机颗粒物(SNA)的重要因素.    

12.  南京大气细颗粒物中水溶性组分的污染特征  被引次数:4
   张予燕  任兰  孙娟  朱志锋  陈妍妍《中国环境监测》,2013年第29卷第4期
   为了解南京城区大气细颗粒物中水溶性组分的污染特征,在国控点草场门进行了连续一年的PM2.5采样与分析。6种离子日均浓度为5.29~67.6 μg/m3,其中SO42-、NH4+、NO3-是PM2.5的主要组成成分,6 种离子约占PM2.5总质量的31%,SO42-、NO3-和NH4+相关性较好,NH4+是PM2.5中硫酸盐和硝酸盐中居于主导地位的离子。    

13.  西安市区大气中PM2.5和PM10质量浓度污染特征  被引次数:1
   董娅玮  杜新黎  李扬扬  曹磊  张佳音  蒙瑞丽  唐小威  赵胤翔《中国环境监测》,2015年第31卷第5期
   2013年3月—2014年2月期间,设置1个监测点位,采集了西安市区大气环境中PM10和PM2.5样品,采用重量法测定了PM2.5和PM10质量浓度。结果表明,西安市区PM2.5质量浓度为16~558 μg/m3,平均值为128 μg/m3,超标率69.1%;PM10质量浓度范围为32~887 μg/m3,平均值为249 μg/m3,超标率71.8%。虽然PM2.5和PM10质量浓度的逐日变化幅度比较大,但是整体变化趋势非常相似,存在显著的正相关关系(r=0.831 9)。PM2.5和PM10质量浓度存在明显的季节变化,均为冬季最高,春季次之,秋季较低,夏季最低。ρ (PM2.5)/ρ (PM10)为0.245~0.822,平均值为0.510,说明PM2.5在PM10中所占比例大于PM2.5~10;此外,该比值呈现一定的季节变化规律,冬季、夏季较高,秋季次之,春季最低。霾天气发生时,该比值和PM2.5质量浓度明显高于无霾天气。    

14.  北碚区气溶胶光学厚度特征及其与颗粒物浓度的相关性  
   曾唯  郝庆菊  赵仲婧  熊维霞  陈俊江  辛金元  江长胜《环境科学》,2020年第41卷第3期
   为了解重庆市北碚区大气质量状况,利用其2014年气溶胶光学厚度和颗粒物质量浓度的同步观测结果进行分析.结果表明,北碚区AOD500 nm的年均值为1.46±0.69,其随月份变化明显,其中11月最高为2.90±1.85,9月最低为0.54±0.05.北碚区存在颗粒物污染的现象,PM2.5和PM10的年均值分别为(62±40)μg·m-3和(94±51)μg·m-3,均超出GB 3095-2012《环境空气质量标准》二级标准限值,PM2.5与PM10的日均值超标率分别为26%和15%.细粒子PM2.5与可吸入颗粒物PM10浓度之间呈现显著性相关,全年决定系数R2能够达到0.95(P<0.01),AOD与PM2.5、PM10之间全年均呈正相关特性,全年决定系数R2分别为0.48和0.46,且不同季节下的决定系数和相关函数均有差异,其中冬季相关性最好,夏季相关性最差.全年AOD与AQI呈正相关特性,决定系数R2为0.15(P<0.05).AOD值受天气要素综合作用的影响,观测期间也应将温度、湿度、水汽等要素数据进行同步采集.    

15.  邯郸市大气复合污染特征的监测研究  被引次数:5
   许亚宣  李小敏  于华通  马建锋  史聆聆  董林艳  何磊《环境科学学报》,2015年第35卷第9期
   利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:①2013年PM2.5、PM10的年均浓度分别为139和238 μg · m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1 μg · m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.②2013年O3日最大8小时平均浓度的最大值为238 μg · m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288 μg · m-3,是国家二级标准的1.4倍,超标小时数为148 h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.③邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.    

16.  2013年1月中国中东部大气重污染期间上海颗粒物的污染特征  被引次数:20
   周敏  陈长虹  乔利平  楼晟荣  王红丽  黄海英  王倩  陈明华  陈宜然  李莉  黄成  邹兰军  牟莹莹  张钢锋《环境科学学报》,2013年第33卷第11期
   2013年1月,我国中东部地区连续遭受多场大范围、长时间、高强度的灰霾天气.期间,本研究采用在线连续观测手段测量了上海市城区大气中气态污染物、颗粒物的质量浓度、细颗粒物的化学组分等,获得了高污染过程中颗粒物的污染特征.观测结果显示,1月份期间PM10、PM2.5与PM1.0平均浓度分别为(125±75) μg·m-3、(82±54) μg·m-3和(44±27) μg·m-3,PM2.5/PM10为65.0%±13.0%,能见度小于10.0 km的累计时间长达284 h,占整月小时数的38.2%.灰霾期间大气PM2.5中SO42-、NO3-、NH4+和OM分别占PM2.5的21.5%±4.9%、22.8%±5.9%、15.9%±3.1%和20.4%±4.3%,其中,二次组分(SNA+SOA)占PM2.5的65.7%±8.4%,表明灰霾期间二次组分对PM2.5的贡献较大;灰霾期间还测得较高的SOR和NOR,分别为0.335±0.121和0.229±0.066,说明SO42-和NO3-的生成效率较高;较高的/比值(1.137±0.438)表明灰霾期间机动车的污染较明显.研究发现,随着PM2.5质量浓度不断地增加,SNA的比例明显上升,期间NH4+对SO42-、NO3-等酸性物质的中和发挥了重要作用.研究结果显示,灰霾期间,因受低温和高浓度颗粒物的影响,上海地区的大气对有机物的氧化能力明显减弱,昼夜OC/EC值差别不大.    

17.  上海市秋季典型大气高污染过程中颗粒物的化学组成变化特征  被引次数:14
   周敏  陈长虹  王红丽  黄成  苏雷燕  陈宜然  李莉  乔月珍  陈明华  黄海英  张钢锋《环境科学学报》,2012年第32卷第1期
   于2010年10月1日至11月30日在上海市城区对大气中颗粒物质量浓度及细粒子化学组分进行了在线连续观测,获得了秋季大气灰霾和沙尘等典型污染过程中颗粒物质量浓度和化学组成的变化特性.观测结果显示,在大气灰霾污染过程中PM10和PM2.5的日均最高浓度分别达到216~293 μg·m-3和130~204 μg·m-3,PM2.5/PM10的比值在65%以上,总的可溶性无机离子(TWSII)占PM2.5质量浓度的50%以上,有机碳(OC)和元素碳(EC)的总和占25%~30%.二次可溶性离子(SO42-, NO3-, NH4+)占TWSII的83.3%~87.5%,OC/EC的比值在5左右,表明在灰霾污染过程中二次组分对PM2.5的贡献较大;沙尘天气以粗粒子污染为主,TWSII、OC和EC分别仅占PM2.5质量浓度的27.2%、13.4%和2.0%,二次可溶性离子(SO42-, NO3-, NH4+)占TWSII的55.7%,Ca2+、Mg2+等地壳组分的比例较灰霾天气明显升高.研究结果还显示,SO42-和NO3-等二次离子组分的生成与颗粒物中硫与氮的氧化速率有关,在大气灰霾过程中硫转化率(SOR)和氮转化率(NOR)值较高,分别为0.24±0.10和0.15±0.06,说明SO2通过二次反应生成SO42-的能力较强,在污染的环境下高浓度的NO2更有利于向NO3-转化.    

18.  天津市PM10和PM2.5中水溶性离子化学特征及来源分析  被引次数:8
   孙韧  张文具  董海燕  边玮瓅  陈魁《中国环境监测》,2014年第30卷第2期
   2011年5月—2012年1月在天津市南开区设立采样点,采集大气中PM10和PM2.5样品。采用离子色谱法测定颗粒物中水溶性无机阴离子、阳离子成分,分析其主要组成、季节变化及污染来源。结果表明,天津市PM10中离子平均浓度为71.2 μg/m3,占PM10质量浓度的33.7%。PM2.5中离子平均浓度为54.8 μg/m3,占PM2.5质量浓度的39.6%。NH4+、SO42-、NO3-等二次离子含量较大,且夏季含量均为最高。颗粒物总体呈酸性,PM10中∑阳离子/∑阴离子平均值为0.92,PM2.5中该比值为0.75。来源分析发现,PM10可能主要来源于海盐、工业源、二次反应及土壤和建筑尘等,PM2.5则主要来源于海盐污染源、二次反应及生物质燃烧。    

19.  成都平原大气颗粒物中无机水溶性离子污染特征  被引次数:5
   蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明《环境科学》,2016年第37卷第8期
   为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1476个颗粒物样品,应用离子色谱法对PM10和PM2.5中8种无机水溶性离子(SO42-、NO3-、NH4+、K+、Na+、Ca2+、Mg2+、Cl-)进行测量. 结果表明在观测期间,PM2.5~10和PM2.5中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM2.5~10)和ρ(PM2.5)的37.8%和46.6%;其中二次离子(SO42-、NO3-和NH4+,SNA)约占各自水溶性离子总量的81.1%和89.9%. 水溶性离子质量浓度冬季最高,春秋季相当,夏季最低. ρ(SO42-)/ρ(PM2.5)夏秋季较高,而ρ(NO3-)/ρ(PM2.5)冬季最高,夏季最低. SNA、Cl-、K+大多分布在PM2.5中,Ca2+和Mg2+主要分布在PM2.5~10中. PM2.5基本呈中性,水溶性离子主要以(NH42SO4、NH4NO3、KNO3、NaCl、KCl等形式存在. ρ(NO3-)/ρ(SO42-)揭示固定源依然是PM2.5的主要来源. 硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反. 成都平原PM2.5呈区域性复合污染特征,SNA是造成ρ(PM2.5)增加的主导因素.    

20.  大气颗粒物及降尘中重金属的分布特征与人体健康风险评价  被引次数:3
   王永晓  曹红英  邓雅佳  张倩《环境科学》,2017年第38卷第9期
   为了解PM2.5、PM10和降尘中Cu、Mn、Pb、Ti、V、Cd、Cr、Co、Mo、Ni等10种重金属元素的分布特征及人体健康风险,利用大流量颗粒物采样器采集了北京城区某地四季大气中PM2.5、PM10及降尘样品,用ICP-MS测定了上述10种金属元素的质量浓度.结果表明,PM2.5和PM10的年均质量浓度分别为153.40 μg·m-3和232.93 μg·m-3,超出GB 3095-2012中二类环境功能区标准限值的5倍和3倍;PM2.5/PM10的均值为0.74,表明大气颗粒物中以粒径小于2.5 μm的颗粒为主;后向轨迹分析结果表明外源颗粒物的来向随季节变化而改变,冬、春、夏、秋季主要来向为西北、北-东北、东南、东南-西北.PM2.5和PM10中10种元素的年均质量浓度从高到低依次为Ti > Mn > Pb > Cu > Cr > Ni > V > Cd > Mo > Co,其中Ti、Mn、Pb、Cu和Cr这5种元素占10种目标元素总质量浓度的91.93%和92.49%.除PM10中Cd年均质量浓度(6.53 ng·m-3)高于GB 3095-2012限定值(5.00 ng·m-3)外,其他元素的质量浓度均不超标.降尘中各元素的含量由高到低依次为Ti > Mn > Pb > Cu > Ni > Cr > V > Co > Mo > Cd,Ti(2561.48 μg·g-1)占所有元素的质量分数为72.57%,地累积指数(Igeo)结果表明,Cd(4.03)属重度污染,Pb(2.49)介于中度污染和重度污染之间,Cu(1.33)属中度污染,Ni(0.43)属轻微污染.重金属的致癌健康风险(<10-4)和非致癌健康风险(<1),均处于较低水平,短期内不会对人体健康造成威胁,但不能忽视长期处于此环境所带来的健康危害.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号