首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Nansi Lake of China to investigate the spatial and temporal distribution characteristics. The concentrations of 16 kinds priority PAH compounds were determined by GC-MS method. And 210Pb isotope dating method was used to determine the chronological age of the sediment as well as the deposition rate. The results indicated that the total PAHs concentration ranges in surface and core sediment samples were 160 ~32,600 and 137 ~ 693 ng/g (dry wt.), respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm·year???1 and 0.237 g·cm???2·yr???1 and the sediment time of the collected core sample ranged from 1899 to 2000. The peak of PAH concentrations came at recent years. The source analysis showed PAHs mainly came from the contamination of low temperature pyrogenic processes, such as coal combustion. The PAHs concentrations were lower than ERL and LEL values for most collected samples. However, in several surface sediment samples especially in estuary sites, the PAHs concentrations were not only higher than ERL and LEL values, but also higher than ERM values.  相似文献   

2.
Street dusts collected from 20 locations in the Chang-Zhu-Tan (Changsha, Zhuzhou, and Xiangtan) region, Hunan, China, in May to July 2006, were investigated for sources of polycylic aromatic hydrocarbons (PAHs). The individual PAH concentrations were in the range of 10–4316 ng g?1, and ∑PAHs16 levels were in the range of 3,515–24,488 ng g?1, with a mean of 8,760 ng g?1. The high-molecular-weight PAHs (four to six rings), ranging from 47.51 to 82.11 %, with a mean of 74.79 %, were the dominant PAH compounds in almost all of the dusts. The isomer ratios suggested a rather uniform mixture of coal combustion and petroleum PAH sources. Factor analysis and multiple linear regression analysis indicate that the main sources of the 16 PAHs were coal combustion/vehicle exhaust, coking/petroleum, and plant combustion, with contribution rates of 50.9, 35.01, and 14.08, respectively. The spatial distributions of PAH concentrations were significantly related to the distribution of industries, traffic circulation, and farmland in this region.  相似文献   

3.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments from the Bizerte Lagoon (northern Tunisia), 18 surface sediment samples were collected in March 2011 and analyzed for 14 US Environmental Protection Agency priority PAHs by high-performance liquid chromatography. The total concentrations of the 14 PAHs (ΣPAHs) ranged from 16.9 to 394.1 ng g?1 dry weight (dw) with a mean concentration of 85.5 ng g?1 dw. Compared with other lagoons, coasts, and bays in the world, the concentrations of PAHs in surface sediments of the Bizerte Lagoon are low to moderate. The PAHs’ composition pattern was dominated by the presence of four-ring PAHs (45.8 %) followed by five-ring (26.8 %) and three-ring PAHs (12.7 %). The PAH source analysis suggested that the main origin of PAHs in the sediments of the lagoon was mainly from pyrolytic sources. According to the numerical effect-based sediment quality guidelines of the USA, the levels of PAHs in the Bizerte Lagoon should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent values calculated for the samples varied from 3.1 to 53.7 ng g?1 dw with an average of 10.6 ng g?1 dw.  相似文献   

4.
The present study proposed to investigate the atmospheric distribution, sources, and inhalation health risks of polycyclic aromatic hydrocarbons (PAHs) in a tropical megacity (Delhi, India). To this end, 16 US EPA priority PAHs were measured in the inhalable fraction of atmospheric particles (PM10; aerodynamic diameter, ≤10 μm) collected weekly at three residential areas in Delhi from December 2008 to November 2009. Mean annual 24 h PM10 levels at the sites (166.5–192.3 μg m?3) were eight to ten times the WHO limit. Weekday/weekend effects on PM10 and associated PAHs were investigated. Σ16PAH concentrations (sum of 16 PAHs analyzed; overall annual mean, 105.3 ng m?3; overall range, 10.5–511.9 ng m?3) observed were at least an order of magnitude greater than values reported from European and US cities. Spatial variations in PAHs were influenced by nearness to traffic and thermal power plants while seasonal variation trends showed highest concentrations in winter. Associations between Σ16PAHs and various meteorological parameters were investigated. The overall PAH profile was dominated by combustion-derived large-ring species (85–87 %) that were essentially local in origin. Carcinogenic PAHs contributed 58–62 % to Σ16PAH loads at the sites. Molecular diagnostic ratios were used for preliminary assessment of PAH sources. Principal component analysis coupled with multiple linear regression-identified vehicular emissions as the predominant source (62–83 %), followed by coal combustion (18–19 %), residential fuel use (19 %), and industrial emissions (16 %). Spatio-temporal variations and time-evolution of source contributions were studied. Inhalation cancer risk assessment showed that a maximum of 39,780 excess cancer cases might occur due to lifetime inhalation exposure to the analyzed PAH concentrations.  相似文献   

5.
The Songhua River is the third largest river in China and the primary source of drinking and irrigation water for northeastern China. The distribution of 16 priority polycyclic aromatic hydrocarbons (PAHs) in water [dissolved water (DW) and suspended particulate matter (SPM)], sediment, and soil in the river basin was investigated, and the associated risk of cancer from these PAHs was also assessed. The total concentration of PAHs ranged from 13.9 to 161 ng L?1 in DW, 9.21 to 83.1 ng L?1 in SPM, 20.5 to 632 ng g?1 dw (dry weight) in sediment, and from 30.1 to 870 ng g?1 dw in soil. The compositional pattern of PAHs indicated that three-ring PAHs were predominant in DW and SPM samples, while four-ring PAHs dominated in sediment and soil samples. The spatial distribution of PAHs revealed some site-specific sources along the river, with principal component analysis indicating that these were from pyrogenic sources (such as coal and biomass combustion, and vehicle emissions) and coke oven emission distinguished as the main source of PAHs in the Songhua River Basin. Based on the ingestion of PAH-contaminated drinking water from the Songhua River, cancer risk was quantitatively estimated by combining the Incremental Lifetime Cancer Risk assessment model and BaP-equivalent concentration for five age groups of people (adults, teenagers, children, toddlers, and infants). Overall, the results suggest that the estimated integrated lifetime cancer risk for all groups was in acceptable levels. This study is the first attempt to provide information on the cancer risk of PAHs in drinking water from the Songhua River.  相似文献   

6.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

7.
Spatial and seasonal distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US Environmental Protection Agency, were investigated in the surface water of the Taizi River in Liaoning Province, northeast of China. Samples were collected from the mainstream, and tributaries of the Taizi River in dry, wet, and normal seasons. Five important industrial point sources were also monitored. The total PAH concentrations ranged from 454.5 to 1,379.7 ng l?1 in the dry season, 1,801.6 to 5,868.9 ng l?1 in the wet season, and 367.0 to 5,794.5 ng l?1 in the normal season. The total PAH concentrations were significantly increased in the order of wet season > normal season > dry season. The profile of PAHs in the surface water samples was dominated by low molecular weight PAHs particularly with two- and three-ring components in the three seasons, suggesting that the PAHs were from a relatively recent local source. Source identification inferred that the PAHs in the surface water of the Taizi River came from both petrogenic inputs and pyrogenic sources.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) in 24 surface sediments from the Dahuofang Reservoir (DHF), the largest man-made lake in Northeast China, were measured. The results showed that the concentrations of 16 US EPA priority PAHs in the sediments ranged from 323 to 912 ng/g dry weight with a mean concentration of 592?±?139 ng/g. The PAH source contributions were estimated based on positive matrix factorization model. The coal combustion contributed to 31 % of the measured PAHs, followed by residential emissions (22 %), biomass burning (21 %), and traffic-related emissions (10 %). Pyrogenic sources contributed ~84 % of anthropogenic PAHs to the sediments, indicating that energy consumption release was a predominant contribution of PAH pollution in DHF. Compared with the results from the urban atmospheric PAHs in the region, there was a low contribution from traffic-related emissions in the sediments possibly due to the low mobility of the traffic-related derived 5+6-ring PAHs and their rapid deposition close to the urban area.  相似文献   

9.
The objectives of this study were to investigate the levels, dispersion patterns, seasonal variation, and sources of 16 priority polycyclic aromatic hydrocarbons (16 EPA-PAHs) in the Hun River of Liaoning Province, China. Samples of surface water were collected from upstream to downstream locations, and also from the main tributaries of the Hun River in dry period, flood period, and level period, respectively. After appropriate preparation, all samples were analyzed for 16 EPA-PAHs. Total PAHs concentrations varied from 124.55 to 439.27 ng l?1 in surface water in dry period, 1,615.75 to 5,270.04 ng l?1 in flood period, and 2,247.42 to 7,767.9 ng l?1 in level period. The 16 EPA-PAHs concentrations were significantly increased in the order of level period > flood period > dry period. The composition pattern of PAHs in surface water was dominated by low molecular weight PAHs, in particular two- to three-ring PAHs. In addition, two-ring PAH accounted for 39.33 to 88.27 % of the total PAHs in level period. Low molecular weight PAHs predomination together with higher levels of PAHs in flood and level period suggested a relatively recent local source of PAHs. Special PAHs ratios such as phenanthrene/anthracene and fluoranthene/pyrene indicated that under dry weather season conditions, the PAHs found in surface water were primarily from petrogenic source, while under wet weather season conditions they were from mixed source of both petrogenic inputs and combustion sources. The comparison of PAHs contamination among different types of areas in China suggested that atmospheric depositions might be the most important approaches of PAHs into water system. Although the Hun River exists low PAHs ecological risk now, potential toxic effects will be existed in the future especially in flood and level period.  相似文献   

10.
The concentration, distribution, and origin of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in river sediments from the western and southern catchments of the Bohai Sea, China. A toxicity assessment of 28 sediment samples collected from 15 main rivers was conducted by utilizing threshold and probable effect concentrations (TEC and PEC, respectively) derived from consensus-based sediment quality guidelines. The concentrations of total PAHs (∑PAH16) ranged from 0.14 to 10,757 μg/kg dry weight (mean?=?1,368.6 μg/kg). The high concentrations of PAHs found in Binhai New Area of Tianjin and Binzhou City are likely the result of rapid population and heavy industry growth, resulting in elevated point and nonpoint source inputs of PAHs. Of the samples collected, samples 1 and 10 (7.1 % of the total) were categorized as toxic since some of the PAH concentrations exceeded the corresponding PECs. Twenty samples were classified as nontoxic, with both the individual PAH and the∑PAH16 concentrations falling below the corresponding TECs. Analyses of selected PAH isomer ratios aided in the identification of PAH origins, allowing for a discrimination between pyrogenic and petrogenic sources. Spatial variability confirmed source heterogeneity within the study area. The most significant PAH-associated contamination was found in the Beitang River and Ji Canal, which are located in Binhai New Area. The magnitude of contamination and the likelihood of an ongoing influx of PAHs support the need for a better understanding of pollution sources and methods for both control and sediment restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号